版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE【巩固练习】一.选择题1.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A.150°B.210°C.105°D.75°2.如图,在∠AOB的两边上截取AO=BO,CO=DO,连结AD、BC交于点P.则下列结论正确的是()①△AOD≌△BOC;②△APC≌△BPD;③点P在∠AOB的平分线上A.只有① B.只有② C.只有①② D.①②③3.(2016•琼海校级模拟)如图,AE∥DF,AE=DF.则添加下列条件还不能使△EAC≌△FDB.()A.AB=CD B.CE∥BF C.CE=BF D.∠E=∠F4.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A.1B.2C.5D.无法确定5.(2015•南漳县模拟)如图,在Rt△ABC中,∠BAC=90°,AB=AC,直角∠EPF的顶点P是BC的中点,将∠EPF绕顶点P旋转,两边PE,PF分别交AB,AC于点E,F.下列四个结论:①AE=CF;②△PEF是等腰直角三角形;③EF=AP;④S四边形AEPF=S△ABC.在∠EPF旋转过程中,上述四个结论始终正确的有()A.①②③ B.②③④ C.①③④ D.①②④6.如图,AB⊥BC于B,BE⊥AC于E,∠1=∠2,D为AC上一点,AD=AB,则().A.∠1=∠EFDB.FD∥BCC.BF=DF=CDD.BE=EC7.如图,已知AB=AC,PB=PC,且点A、P、D、E在同一条直线上.下面的结论:①EB=EC;②AD⊥BC;③EA平分∠BEC;④∠PBC=∠PCB.其中正确的有()A.1个B.2个C.3个D.4个8.如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.330°B.315°C.310°D.320°二.填空题9.如图,△ABC中,AD、CE是△ABC的两条高,BC=5cm,AD=3cm,CE=4cm,则AB的长为________.
10.如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.请你写出所有可能的结果的序号:.11.△ABC中,∠BAC=100°,若DE、FG分别垂直平分AB和AC,则∠EAF=.12.如图所示,在△ABC中,AB=AC,点O在△ABC内,且∠OBC=∠OCA,∠BOC=110°,求∠A的度数为________.13.(2016春•丹阳市期末)若三角形的三边长分别为a、b、5,其中a、b为正整数,且a≤b≤5,则所有满足条件的三角形共有个.
14.如图所示,AD,AE是三角形ABC的高和角平分线,∠B=36°,∠C=76°,则∠DAE的度数.15.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是.16.(2015•芦溪县模拟)如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为cm.三.解答题17.(2015•于洪区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.18.如图所示,已知D是AB上一点,E是AC上的一点,BE、CD相交于点F,∠A=62°,∠ACD=15°,∠ABE=20°.
(1)求∠BDC的度数;
(2)求∠BFD的度数;
(3)试说明∠BFC>∠A.
19.如图所示,△ABC中,D,E在BC上,且DE=EC,过D作DF∥BA,交AE于点F,DF=AC,求证:AE平分∠BAC.
20.已知:∠a,以及线段b,c(b<c).求作:三角形ABC,使得∠BAC=∠a,AB=c,∠BAC的平分线AD=b.【答案与解析】一.选择题1.【答案】A;【解析】∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°-75°=105°,∴∠1+∠2=360°-2×105°=150°.2.【答案】D;【解析】可由SAS证①,由①和AAS证②,SSS证③.3.【答案】C;【解析】A、当AB=CD时,AC=DB,根据SAS可以判定△EAC≌△FDB;B、当CE∥BF时,∠ECA=∠FBD,根据AAS可以判定△EAC≌△FDB;C、当CE=BF时,不能判定△EAC≌△FDB;D、当∠E=∠F时,根据ASA可以判定△EAC≌△FDB;故选C.4.【答案】A;【解析】因为知道AD的长,所以只要求出AD边上的高,就可以求出△ADE的面积.过D作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,构造出Rt△EDF≌Rt△CDG,求出GC的长,即为EF的长,然后利用三角形的面积公式解答即可5.【答案】D;【解析】解:∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴AP⊥BC,AP=BC=PC,∠BAP=∠CAP=45°=∠C.∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EPA,在△AEP与△CPF中,,∴△APE≌△CPF(ASA).∴AE=CF;EP=PF,故①②正确;∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC,∵EF不是△ABC的中位线,∴EF≠AP,故③错误;∵△AEP≌△CPF,∴S△AEP=S△CPF(全等三角形的面积相等),又∵S四边形AEPF=S△AEP+S△AFP,∴S四边形AEPF=S△APC=S△ABC,即S四边形AEPF=S△ABC.故④正确.故选D.6.【答案】B;【解析】证△ADF≌△ABF,则∠ABF=∠ADF=∠ACB,所以FD∥BC.7.【答案】D;8.【答案】B;【解析】由图中可知:①∠4=×90°=45°,②∠1和∠7的余角所在的三角形全等∴∠1+∠7=90°同理∠2+∠6=90°,∠3+∠5=90°∠4=45°∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=3×90°+45°=315°.二.填空题9.【答案】;【解析】(提示:在△ABC中,2S△ABC=BC×AD=AB×CE)
10.【答案】①②④;【解析】①OCP=∠OCP′,符合ASA,可得二三角形全等,从而得到OP=OP′;②∠OPC=∠OP′C;符合AAS,可得二三角形全等,从而得到OP=OP′;④PP′⊥OC,符合ASA,可得二三角形全等,从而得到OP=OP′;③中给的条件是边边角,全等三角形判定中没有这个定理.故填①②④11.【答案】20°;【解析】根据三角形内角和定理求出∠B+∠C=80°,再根据线段垂直平分线的性质求出∠BAE+∠CAF=∠B+∠C,然后便不难求出∠EAF.12.【答案】40°;【解析】∵AB=AC,所以∠ABC=∠ACB,又∵∠OBC=∠OCA,∴∠ABC+∠ACB=2(∠OBC+∠OCB),∵∠BOC=110°,∴∠OBC+∠OCB=70°,∴∠ABC+∠ACB=140°,∴∠A=180°-(∠ABC+∠ACB)=40°.13.【答案】9;【解析】∵三角形的三边a、b、5的长都是整数,且a≤b≤5,c最大为5,∴a=1,b=5,c=5;a=2,b=4,或5,c=5;a=3,b=3,或4,或5,c=5;a=4,b=4,或5,c=5;a=5,b=5,c=5;故存在以a、b、5为三边长的三角形的个数为9个.14.【答案】20°;【解析】解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=68°,∵AE是角平分线,∴∠EAC=∠BAC=34°.∵AD是高,∠C=76°,∴∠DAC=90°﹣∠C=14°,∴∠DAE=∠EAC﹣∠DAC=34°﹣14°=20°.15.【答案】m+n>b+c;【解析】在BA的延长线上取点E,使AE=AC,连接ED,EP,∵AD是∠A的外角平分线,∴∠CAD=∠EAD,在△ACP和△AEP中,,∴△ACP≌△AEP(SAS),∴PE=PC,在△PBE中,PB+PE>AB+AE,∵PB=m,PC=n,AB=c,AC=b,∴m+n>b+c.16.【答案】15;【解析】解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E∴∠DEC=∠A=90°∵CD=CD∴△ACD≌△ECD∴AC=EC,AD=ED∵∠A=90°,AB=AC∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=15cm.三.解答题17.【解析】证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠FAC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.18.【解析】证明:延长FE到G,使EG=EF,连接CG,在△DEF和△CEG中,ED=EC,∠DEF=∠CEG,FE=EG,∴△DEF≌△CEG,∴DF=GC,∠DFE=∠G,∵DF∥AB,∴∠DFE=∠BAE,∵DF=AC,∴GC=AC,∴∠G=∠CAE,∴∠BAE=∠CAE,即AE平分∠BAC.19.【解析】解:设∠A=x°,∵BD=AD,∴∠ABD=∠A=x°,∵BD是角平分线,∴∠ABC=2x°,∵AB=AC,∴∠C=∠ABC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年库房转租合同转租条件、转租手续及租金处理分析
- 2024年企业内部审计保密协议
- 2024年度企业社会责任报告合同
- 2024年度住宅小区木门安装工程合同
- 2024年度许可使用合同(商标)
- 腰椎ct课件教学课件
- 2024北京技术合同
- 2024年大数据使用协议:数据收集、分析和应用的具体规定
- 液体密度课件教学课件
- 舆论学课件教学
- 神州数码dcfw1800系列安全网关命令手册40r4c
- 《创伤失血性休克中国急诊专家共识(2023)》解读课件
- 补贴资金管理办法
- 食品安全管理制度可打印【7】
- (新版)粮油仓储管理员职业鉴定理论考试题库(含答案)
- 2024发电企业安全风险分级管控和隐患排查治理管理办法
- 2024-2030年中国甲硫基乙醛肟行业市场行情监测及发展前景研判报告
- 《普通高等学校军事课教程》课件第5章
- 第四章运动和力的关系单元教学设计
- 第五单元写作《如何突出中心》 统编版语文七年级上册
- JTS-131-2012水运工程测量规范
评论
0/150
提交评论