第4讲 材料的结构检测(5) 表面成分分析_第1页
第4讲 材料的结构检测(5) 表面成分分析_第2页
第4讲 材料的结构检测(5) 表面成分分析_第3页
第4讲 材料的结构检测(5) 表面成分分析_第4页
第4讲 材料的结构检测(5) 表面成分分析_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第4讲材料的结构检测材料概论

东北大学2006年11月

第4讲

材料的结构检测

4.1光学显微镜、定量金相分析技术4.2X射线衍射分析4.3扫描电镜、透射电镜分析4.4表面成分分析4.5电子显微技术的新进展4.6差热分析4.7超声波检测

4.4表面成分分析随着材料科学的进展,人们发现除固体内部的缺陷和杂质影响材料性能之外,固体的表面(包括晶界和相界等内表面)状态对材料性能也有重要影响。例如,金属材料的氧化和腐蚀,材料的脆性和断裂行为,半导体的外延生长等,都与表面几个原子层范围内的化学成分及结构有密切关系,从而要求从微观的、原子和分子的尺度上认识表面现象,为此,需要发展研究表面成分和结构的新物理方法。在研究表面现象时,由于涉及的层深很浅,故需对样品的制备和分析过程进行严格控制,以防止外来污染造成的假象和误差。因此,用于分析的仪器必须具有极高的真空度(10-9~10-10mmHg);同时,由于被检测信息来自极小的采样体积,信息强度微弱,因此,对信息检测系统的灵敏度要求也很高。由于上述两方面的原因,表面分析技术一直到60年代以后,随着超高真空技术和电子技术的发展才开始出现,并在随后的10年中得到了较快的发展。

与金属的表面结构和成分分析有关的仪器和技术主要有:1.俄歇电子能谱分析(AugerElectronSpectrometry.简称AES);2.离子探针(IonMicroanalysis,简称IMA);3.场离子显微镜和原子探针(FieldIonMicroscopyandAtomProbe,简称FIM);4.低能电子衍射(LowEnergyElectronDiffraction,简称LEED).4.4表面成分分析电子能谱分析法是采用单色光源(如X射线、紫外光)或电子束去照射样品,使样品中电子受到激发而发射出来,然后测量这些电子的产额(强度)对其能量的分布,从中获得有关信息的一类分析方法。本节主要介绍俄歇电子能谱法(AES)X射线光电子能谱法(XPS)

紫外光电子能谱法(UPS)4.4表面成分分析(一)俄歇电子能谱法俄歇电子能谱法是用具有一定能量的电子束(或X射线)激发样品俄歇效应,通过检测俄歇电子的能量和强度,从而获得有关材料表面化学成分和结构的信息的方法。(1)基本原理俄歇电子的产生——俄歇效应

X射线激发固体中原子内层电子使原子电离,原子在发射光电子的同时内层出现空位,此时原子(实际是离子)处于激发态,将发生较外层电子向空位跃迁以降低原子能量的过程,此过程可称为退激发或去激发过程。退激发过程有两种互相竞争的方式,即发射特征X射线或发射俄歇电子。4.4表面成分分析俄歇效应——俄歇电子的产生(示意图)初态终态原子内层(例如K层)出现空位,较外层(例如L层)电子向内层辐射跃迁,发射的辐射即X射线,其光子频率取决于电子跃迁前(电子在L层)与跃迁后(电子在K层)的能级差(hv=

E=EL-Ek),也可说取决于初态(跃迁前,K层空位)与终态(跃迁后,L层空位)电子结合能之差(hv=

Eb=EbK-EbL),故称为特征X射线(表征元素的特征信息)。由于是光激发(光致电离),故发射的X射线为荧光(二次)X射线。如原子的退激发不以发射X射线的方式进行,则将以发射俄歇电子的方式进行,此过程称俄歇过程或俄歇效应。4.4表面成分分析俄歇电子的激发方式虽然有多种(如X射线、电子束等),但通常主要采用一次电子激发。因为电子便于产生高束流,容易聚焦和偏转。俄歇电子的能量和入射电子的能量无关,只依赖于原子的能级结构和俄歇电子发射前它所处的能级位置。4.4表面成分分析俄歇电子产额俄歇电子产额或俄歇跃迁几率决定俄歇谱峰强度,直接关系到元素的定量分析。俄歇电子与特征X射线是两个互相关联和竞争的发射过程。对同一K层空穴,退激发过程中荧光X射线与俄歇电子的相对发射几率,即荧光产额(

K)和俄歇电子产额()满足=1-

K俄歇电子产额与原子序数的关系由图可知,对于K层空穴Z<19,发射俄歇电子的几率在90%以上;随Z的增加,X射线荧光产额增加,而俄歇电子产额下降。Z<33时,俄歇发射占优势。4.4表面成分分析俄歇分析的选择通常对于Z≤14的元素,采用KLL俄歇电子分析;14<Z<42的元素,采用LMM俄歇电子较合适;Z>42时,以采用MNN和MNO俄歇电子为佳。4.4表面成分分析为什么说俄歇电子能谱分析是一种表面分析方法且空间分辨率高?大多数元素在50~1000eV能量范围内都有产额较高的俄歇电子,它们的有效激发体积(空间分辨率)取决于入射电子束的束斑直径和俄歇电子的发射深度。能够保持特征能量(没有能量损失)而逸出表面的俄歇电子,发射深度仅限于表面以下大约2nm以内,约相当于表面几个原子层,且发射(逸出)深度与俄歇电子的能量以及样品材料有关。在这样浅的表层内逸出俄歇电子时,入射电子束的侧向扩展几乎尚未开始,故其空间分辨率直接由入射电子束的直径决定。4.4表面成分分析直接谱与微分谱直接谱:俄歇电子强度[密度(电子数)]N(E)对其能量E的分布[N(E)-E]。微分谱:由直接谱微分而来,是dN(E)/dE对E的分布[dN(E)/dE-E]。俄歇电子能谱示例(银原子的俄歇能谱)4.4表面成分分析化学位移与伴峰原子“化学环境”变化,不仅可能引起俄歇峰的位移(称化学位移),也可能引起其强度的变化,这两种变化的交叠,则将引起俄歇峰(图)形状的改变。原子“化学环境”指原子的价态或在形成化合物时,与该(元素)原子相结合的其它(元素)原子的电负性等情况如:原子发生电荷转移(如价态变化)引起内层能级变化,从而改变俄歇跃迁能量,导致俄歇峰位移;又如:不仅引起价电子的变化(导致俄歇峰位移),还造成新的化学键(或带结构)形成以致电子重新排布的化学环境改变,将导致谱图形状的改变(称为价电子谱)等。4.4表面成分分析化学位移示例Mo(110)面俄歇能谱4.4表面成分分析伴峰由于俄歇电子逸出固体表面时,有可能产生不连续的能量损失,从而造成在主峰的低能端产生伴峰的现象。如:入射电子引起样品内壳层电子电离而产生伴峰(称为电离损失峰);又如:入射电子激发样品(表面)中结合较弱的价电子产生类似等离子体振荡的作用而损失能量,形成伴峰(称等离子体伴峰)等。4.4表面成分分析(2)俄歇电子能谱仪主要组成部分:电子枪、能量分析器、二次电子探测器、(样品)分析室、溅射离子枪和信号处理与记录系统等。样品和电子枪装置需置于10-7~10-8Pa的超高真空分析室中。俄歇谱仪示意图4.4表面成分分析俄歇电子能谱仪发展初期的俄歇谱仪只能做定点的成分分析。70年代中,把细聚焦扫描入射电子束与俄歇能谱仪结合构成扫描俄歇微探针(SAM),可实现样品成分的点、线、面分析和深度剖面分析。由于配备有二次电子和吸收电子检测器及能谱探头,使这种仪器兼有扫描电镜和电子探针的功能。4.4表面成分分析(3)俄歇电子能谱分析定性分析任务:根据实测的直接谱(俄歇峰)或微分谱上的负峰的位置识别元素。方法:与标准谱进行对比。注意:由于电子轨道之间可实现不同的俄歇跃迁过程,所以每种元素都有丰富的俄歇谱,由此导致不同元素俄歇峰的干扰。对于原子序数为3~14的元素,最显著的俄歇峰是由KLL跃迁形成的;对于原子序数14~40的元素,最显著的俄歇峰则是由LMM跃迁形成的。4.4表面成分分析俄歇电子能量图主要俄歇峰的能量用空心圆圈表示,实心圆圈代表每个元素的强峰4.4表面成分分析定性分析的一般步骤:(1)利用“主要俄歇电子能量图”,确定实测谱中最强峰可能对应的几种(一般为2、3种)元素;(2)实测谱与可能的几种元素的标淮谱对照,确定最强峰对应元素的所有峰;(3)反复重复上述步骤识别实测谱中尚未标识的其余峰。注意:化学环境对俄歇谱的影响造成定性分析的困难(但又为研究样品表面状况提供了有益的信息),应注意识别。4.4表面成分分析定量分析基本上是半定量的水平(常规情况下,相对精度仅为30%左右)常用的定量分析方法是相对灵敏度因子法。该法准确性较低,但不需标样,因而应用较广。4.4表面成分分析(4)俄歇电子能谱法的应用优点:①作为固体表面分析法,其信息深度取决于俄歇电子逸出深度(电子平均自由程)。对于能量为50eV~2keV范围内的俄歇电子,逸出深度为0.4~2nm。深度分辨率约为1nm,横向分辨率取决于入射束斑大小。②可分析除H、He以外的各种元素。③对于轻元素C、O、N、S、P等有较高的分析灵敏度。④可进行成分的深度剖析或薄膜及界面分析。4.4表面成分分析俄歇电子能谱在材料科学研究中的应用①材料表面偏析、表面杂质分布、晶界元素分析;②金属、半导体、复合材料等界面研究;③薄膜、多层膜生长机理的研究;④表面的力学性质(如摩擦、磨损、粘着、断裂等)研究;⑤表面化学过程(如腐蚀、钝化、催化、晶间腐蚀、氢脆、氧化等)研究;⑥集成电路掺杂的三维微区分析;⑦固体表面吸附、清洁度、沾染物鉴定等。4.4表面成分分析局限性①不能分析氢和氦元素;②定量分析的准确度不高;③对多数元素的探测灵敏度为原子摩尔分数0.1%~1.0%;④电子束轰击损伤和电荷积累问题限制其在有机材料、生物样品和某些陶瓷材料中的应用;⑤对样品要求高,表面必须清洁(最好光滑)等。4.4表面成分分析(二)X射线光电子能谱法X射线光电子能谱法(XPS),因最初以化学领域应用为主要目标,故又称为化学分析用电子能谱法(ESCA)。技术基础:X射线激发物质光电离、光电子发射过程及其能量关系等见“X射线衍射分析”的相关介绍。

4.4表面成分分析(1)基本原理能谱中表征样品芯层电子结合能的一系列光电子谱峰称为元素的特征峰(参见右图)。Ag的光电子能谱图(MgK

激发)4.4表面成分分析化学位移因原子所处化学环境不同,使原子芯层电子结合能发生变化,则X射线光电子谱谱峰位置发生移动,称之为谱峰的化学位移。图示为带有氧化物钝化层的Al的2p光电子能谱图。由图可知,原子价态的变化导致Al的2p峰位移。Al的2p电子能谱的化学位移4.4表面成分分析物理位移由于固体的热效应与表面荷电效应等物理因素引起电子结合能改变,从而导致光电子谱峰位移,此称之为物理位移。在应用X射线光电子谱进行化学分析时,应尽量避免或消除物理位移。4.4表面成分分析伴峰与谱峰分裂能谱中出现的非光电子峰称为伴峰。如光电子(从产生处向表面)输远过程中因非弹性散射(损失能量)而产生的能量损失峰,X射线源(如Mg靶的K

1与K

2双线)的强伴线(Mg靶的K

3与K

4等)产生的伴峰,俄歇电子峰等。4.4表面成分分析谱峰分裂能谱峰分裂有多重态分裂与自旋-轨道分裂等。如果原子、分子或离子价(壳)层有未成对电子存在,则内层芯能级电离后会发生能级分裂从而导致光电子谱峰分裂,称之为多重分裂。图示为O2分子X射线光电子谱多重分裂。电离前O2分子价壳层有两个未成对电子,内层能级(O1s)电离后谱峰发生分裂(即多重分裂),分裂间隔为1.1eV。氧分子O1s多重分裂(a)氧原子O1s峰;(b)氧分子中O1s峰分裂4.4表面成分分析自旋-轨道分裂一个处于基态的闭壳层(闭壳层指不存在未成对电子的电子壳层)原子光电离后,生成的离子中必有一个未成对电子。若此未成对电子角量子数l>0,则必然会产生自旋-轨道偶合(相互作用),使未考虑此作用时的能级发生能级分裂(对应于内量子数j的取值j=l+1/2和j=l-1/2形成双层能级),从而导致光电子谱峰分裂;此称为自旋-轨道分裂。Ag的光电子能谱图(MgK

激发)4.4表面成分分析(2)X射线光电子能谱仪主要组成部分:X光源(激发源),样品室,电子能量分析器和信息放大、记录(显示)系统等组成。(X射线)光电子能谱仪方框图4.4表面成分分析(3)X射线光电子能谱分析与应用元素(及其化学状态)定性分析方法:以实测光电子谱图与标准谱图相对照,根据元素特征峰位置(及其化学位移)确定样品(固态样品表面)中存在哪些元素(及这些元素存在于何种化合物中)。常用Perkin-Elmer公司的X射线光电子谱手册定性分析原则上可以鉴定除氢、氦以外的所有元素。分析时首先通过对样品(在整个光电子能量范围)进行全扫描,以确定样品中存在的元素;然后再对所选择的峰峰进行窄扫描,以确定化学状态。4.4表面成分分析X射线光电子标准谱图示例4.4表面成分分析应用实例图为已标识的(C3H7)4NS2PF2的X射线光电子谱图。由图可知,除氢以外,其它元素的谱峰均清晰可见。图中氧峰可能是杂质峰,或说明该化合物已部分氧化。(C3H7)4NS2PF2的X

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论