




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市高级中学等学校数学八上期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.点A(-3,4)所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如果点与点关于轴对称,那么的值等于()A. B. C.l D.40393.下列说法中正确的个数是()①若是完全平方式,则k=3②工程建筑中经常采用三角形的结构,这是利用三角形具有稳定性的性质③在三角形内部到三边距离相等的点是三个内角平分线的交点④当时⑤若点P在∠AOB内部,D,E分别在∠AOB的两条边上,PD=PE,则点P在∠AOB的平分线上A.1个 B.2个 C.3个 D.4个4.下列二次根式中,最简二次根式的是()A. B. C. D.5.如图,已知△ABC的三条边和三个角,则甲、乙、丙三个三角形中和△ABC全等的是()A.甲和乙 B.甲和丙 C.乙和丙 D.只有乙6.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35° B.45° C.55° D.60°7.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为()A.45° B.135° C.45°或67.5° D.45°或135°8.下列各数中,(相邻两个3之间2的个数逐次增加1),无理数有()A.0个 B.1个 C.2个 D.3个9.下面四个手机应用图标中是轴对称图形的是()A. B. C. D.10.若≌,则根据图中提供的信息,可得出的值为()A.30 B.27 C.35 D.40二、填空题(每小题3分,共24分)11.若3,2,x,5的平均数是4,则x=_______.12.若点A(2,m)关于y轴的对称点是B(n,5),则mn的值是_____.13.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A2020的坐标是________.14.如图,和都是等腰三角形,且,当点在边上时,_________________度.15.如图,,……,按照这样的规律下去,点的坐标为__________.16.计算:__________.17.如图,直线:与直线:相交于点P(1,2),则关于的不等式x+1>mx+n的解集为____________.18.长方形相邻边长分别为,,则它的周长是_______,面积是_______.三、解答题(共66分)19.(10分)某中学为丰富综合实践活动,开设了四个实验室如下:A.物理;B.化学;C.信息;D.生物.为了解学生最喜欢哪个实验室,随机抽取了部分学生进行调查,每位被调查的学生都选择了一个自己最喜欢的实验室,调查后将调查结果绘制成了如图统计图,请根据统计图回答下列问题(1)求这次被调查的学生人数.(2)请将条形统计图补充完整.(3)求出扇形统计图中B对应的圆心角的度数.20.(6分)欣欣服装厂加工A、B两种款式的运动服共100件,加工A种运动服的成本为每件80元,加工B种运动服的成本为每件100元,加工两种运动服的成本共用去9200元.(1)A、B两种运动服各加工多少件?(2)A种运动服的标价为200元,B种运动服的标价为220元,若两种运动服均打八折出售,则该服装厂售完这100件运动服共盈利多少元?21.(6分)阅读下列解题过程:(1);(2);请回答下列问题:(1)观察上面解题过程,请直接写出的结果为__________________.(2)利用上面所提供的解法,请化简:22.(8分)如图,已知△ABC的三个顶点的坐标分别为A(-5,0)、B(-2,3)、C(-1,0).(1)画出△ABC关于原点O成中心对称的图形△A′B′C′;(2)将△ABC绕原点O顺时针旋转90°,画出对应的△A″B″C″,并写出点B″的坐标.23.(8分)先化简,再求值:(2x+1)2﹣(x+2y)(x﹣2y)-(2y)2,其中x=﹣1.24.(8分)如图,在平面直角坐标系中,,,且,满足,直线经过点和.(1)点的坐标为(,),点的坐标为(,);(2)如图1,已知直线经过点和轴上一点,,点在直线AB上且位于轴右侧图象上一点,连接,且.①求点坐标;②将沿直线AM平移得到,平移后的点与点重合,为上的一动点,当的值最小时,请求出最小值及此时N点的坐标;(3)如图2,将点向左平移2个单位到点,直线经过点和,点是点关于轴的对称点,直线经过点和点,动点从原点出发沿着轴正方向运动,连接,过点作直线的垂线交轴于点,在直线上是否存在点,使得是等腰直角三角形?若存在,求出点坐标.25.(10分)如图,在平面直角坐标系中,点为坐标原点,的顶点、的坐标分别为,,并且满足,.(1)求、两点的坐标.(2)把沿着轴折叠得到,动点从点出发沿射线以每秒个单位的速度运动.设点的运动时间为秒,的面积为,请用含有的式子表示.26.(10分)(1)计算:.(2)已知,求的值.(3)化简:.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【题目详解】解:因为点A(-3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.
故选:B.【题目点拨】本题主要考查点的坐标的性质,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、C【分析】利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数.即点M(x,y)关于x轴的对称点M′的坐标是(x,-y),进而得出答案.【题目详解】解:∵点P(a,2019)与点Q(2020,b)关于x轴对称,
∴a=2020,b=-2019,
∴,
故选:C.【题目点拨】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.3、C【分析】根据完全平方公式、三角形的稳定性、内心的性质、零指数幂的运算及角平分线的判定定理即可求解.【题目详解】①若是完全平方式,则k=±3,故错误;②工程建筑中经常采用三角形的结构,这是利用三角形具有稳定性的性质,正确;③在三角形内部到三边距离相等的点是三个内角平分线的交点,正确;④当时,正确;⑤若点P在∠AOB内部,D,E分别在∠AOB的两条边上,PD=PE,点P不一定在∠AOB的平分线上,故错误;故选C.【题目点拨】此题主要考查完全平方公式、三角形的稳定性、内心的性质、零指数幂的运算及角平分线的判定定理,解题的关键是熟知其特点及性质.4、C【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【题目详解】A、=,被开方数含分母,不是最简二次根式;故A选项错误;B、=,被开方数为小数,不是最简二次根式;故B选项错误;C、,是最简二次根式;故C选项正确;D.=,被开方数,含能开得尽方的因数或因式,故D选项错误;故选C.考点:最简二次根式.5、B【分析】根据三角形全等的判定定理SSS、SAS、AAS、ASA、HL逐个进行分析即可.【题目详解】解:甲三角形有两条边及夹角与△ABC对应相等,根据SAS可以判断甲三角形与△ABC全等;
乙三角形只有一条边及对角与△ABC对应相等,不满足全等判定条件,故乙三角形与△ABC不能判定全等;
丙三角形有两个角及夹边与△ABC对应相等,根据ASA可以判定丙三角形与△ABC全等;
所以与△ABC全等的有甲和丙,
故选:B.【题目点拨】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.6、C【解题分析】试题分析:根据等腰三角形的三线合一的性质可直接得到AD平分∠BAC,AD⊥BC,因此∠DAC=∠BAD=35°,∠ADC=90°,从而可求得∠C=55°.故选C考点:等腰三角形三线合一7、D【解题分析】①如图,等腰三角形为锐角三角形,∵BD⊥AC,∠ABD=45°,∴∠A=45°,即顶角的度数为45°.②如图,等腰三角形为钝角三角形,∵BD⊥AC,∠DBA=45°,∴∠BAD=45°,∴∠BAC=135°.故选:D.8、C【分析】直接根据无理数的定义直接判断得出即可.【题目详解】(相邻两个3之间2的个数逐次增加1)中只有,2.32232223…(相邻两个3之间的2的个数逐次增加1)共2个是无理数.
故选:C.【题目点拨】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像2.32232223…,等有这样规律的数.9、D【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【题目详解】A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【题目点拨】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.10、A【分析】在△ABC中利用三角形内角和可求得∠A=70°,则可得∠A和∠D对应,则EF=BC,可得到答案.【题目详解】∵∠B=50°,∠C=60°,∴∠A=70°,∵△ABC≌△DEF,∴∠A和∠D对应,∴EF=BC=30,∴x=30,故选:A.【题目点拨】本题主要考查全等三角形的性质,掌握全等三角形的对应边、对应角相等是解题的关键.二、填空题(每小题3分,共24分)11、6【分析】利用平均数乘以数据的个数得到的和减去已知的几个数即可得到x的值.【题目详解】∵3,2,x,5的平均数是4,∴,故答案为:6.【题目点拨】此题考查利用平均数求未知的数据,正确掌握平均数的计算方法,正确计算是解题的关键.12、-10【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴的对称点的坐标是(-x,y),根据关于y轴对称的点,纵坐标相同,横坐标互为相反数得出m,n的值,从而得出mn.【题目详解】解:∵点A(2,m)关于y轴的对称点是B(n,5),∴n=-2,m=5,∴mn=-10.故答案为-10.【题目点拨】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.关于y轴对称的点,纵坐标相同,横坐标互为相反数,是需要识记的内容.13、(1010,0)【分析】这是一个关于坐标点的周期问题,先找到蚂蚁运动的周期,蚂蚁每运动4次为一个周期,题目问点的坐标,即,相当于蚂蚁运动了505个周期,再从前4个点中找到与之对应的点即可求出点的坐标.【题目详解】通过观察蚂蚁运动的轨迹可以发现蚂蚁的运动是有周期性的,蚂蚁每运动4次为一个周期,可得:,即点是蚂蚁运动了505个周期,此时与之对应的点是,点的坐标为(2,0),则点的坐标为(1010,0)【题目点拨】本题是一道关于坐标点的规律题型,解题的关键是通过观察得到其中的周期,再结合所求点与第一个周期中与之对应点,即可得到答案.14、1【分析】先根据“SAS”证明△ABE≌△CBD,从而∠BAE=∠C.再根据等腰三角形的两底角相等求出∠C的度数,然后即可求出∠BAE的度数.【题目详解】∵和都是等腰三角形,∴AB=BC,BE=BD,∵,∴∠ABE=∠CBD,在△ABE和△CBD中,∵AB=BC,∠ABE=∠CBD,BE=BD,∴△ABE≌△CBD,∴∠BAE=∠C.∵AB=BC,∠ABC=100°,∴∠C=(180°-100°)÷2=1°,∴∠BAE=1°.故答案为:1.【题目点拨】本题主要考查了等腰三角形的定义,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.15、(3029,1009)【分析】从表中可知,各点坐标规律是:往右横坐标依次是+2,+1,+2,+1下标从奇数到奇数,加了3个单位;往右纵坐标是-1,+2,-1,+2下标从奇数到奇数,加了1个单位,由此即可推出坐标.【题目详解】从表中可知,各点坐标规律是:往右横坐标依次是+2,+1,+2,+1∴下标从奇数到奇数,加了3个单位往右纵坐标是-1,+2,-1,+2∴下标从奇数到奇数,加了1个单位,∴的横坐标为3029纵坐标为∴(3029,1009)故答案为:(3029,1009)【题目点拨】本题是有关坐标的规律题,根据题中已知找到点坐标规律是解题的关键.16、【解题分析】直接计算即可得解.【题目详解】解:原式===故答案为.【题目点拨】此题主要考查二次根式的混合运算,熟练掌握法则即可解题.17、x>1【分析】当x+1>mx+n时,直线在直线的上方,根据图象即可得出答案.【题目详解】当x+1>mx+n时,直线在直线的上方,根据图象可知,当直线在直线的上方时,x的取值范围为x>1,所以的不等式x+1>mx+n的解集为x>1故答案为:x>1.【题目点拨】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.18、1【分析】利用长方形的周长和面积计算公式列式计算即可.【题目详解】解:长方形的周长=2×(+)=2×(+2)=6,长方形的面积=×=1.
故答案为:6;1.【题目点拨】此题考查二次根式运算的实际应用,掌握长方形的周长和面积计算方法是解决问题的关键.三、解答题(共66分)19、(1)这次被调查的学生人数为500人;(2)见解析;(3)扇形统计图中B对应的圆心角的度数为54°.【分析】(1)根据项目C的人数及其所占百分比即可求得被调查的人数;(2)总人数减去B、C、D的人数和求出A的人数,补全图形即可;(3)用360°乘以B项目人数所占百分比即可.【题目详解】解:(1)140÷28%=500(人).∴这次被调查的学生人数为500人.(2)A项目的人数为500﹣(75+140+245)=40(人),补全图形如下:(3)×360°=54°.∴扇形统计图中B对应的圆心角的度数为54°.【题目点拨】本题考查的是条形统计图和扇形统计图,读懂统计图、理解不同的统计图中数据的区别和联系是解答本题的关键.20、(1)A种运动服加工40件,B种运动服加工60件;(2)该服装厂售完这100件运动服共盈利7760元.【分析】(1)设A种运动服加工了x件,B种运动服加工了y件,根据该服装厂加工A、B两种款式的运动服共100件且共用去9200元的成本,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据利润与标价、折扣、售价、进价之间的关系,计算解答【题目详解】解:(1)设A种运动服加工x件,B种运动服加工y件,根据题意可得:,解得:,答:A种运动服加工40件,B种运动服加工60件;(2)依题意得:40×(200×0.8﹣80)+60×(220×0.8﹣100)=7760(元),答:共盈利7760元.【题目点拨】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)牢记利润公式,利润=售价-进价,售价=标价×折扣.21、(1);(2)9【分析】(1)利用已知数据变化规律直接得出答案;(2)利用分母有理化的规律将原式化简进而求出即可.【题目详解】解:(1)=.(2)=-1+-+-+…+-+-=-1+=-1+10=9【题目点拨】此题主要考查了分母有理化,正确化简二次根式是解题关键.22、见解析【解题分析】(1)先找到三角形各顶点关于原点的对称点,再依次连接得到△A′B′C′;(1)先连接AO,BO,CO,依次旋转得到A’’,B’’,C’’,再依次连接即可,再根据直角坐标系写出B’’的坐标.【题目详解】(1)△A′B′C′为所求;(2)△A″B″C″为所求,B″的坐标为(3,2)【题目点拨】此题主要考查旋转的作图,解题的关键是熟知旋转的性质先找到各顶点旋转后的顶点,再连接即可.23、3x2+4x+1,2【分析】根据完全平方公式、平方差公式和积的乘方可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【题目详解】解:(2x+1)2﹣(x+2y)(x﹣2y)﹣(2y)2=4x2+4x+1﹣x2+4y2﹣4y2=3x2+4x+1,当x=﹣1时,原式=3×(﹣1)2+4×(﹣1)+1=2.【题目点拨】本题考查了整式的化简求值问题,熟练掌握整式化简求值的步骤是解题的关键.24、(1)-1,0;0,-3;(2)①点;②点,最小值为;(3)点的坐标为或或.【分析】(1)根据两个非负数和为0的性质即可求得点A、B的坐标;(2)①先求得直线AB的解析式,根据求得,继而求得点的横坐标,从而求得答案;②先求得直线AM的解析式及点的坐标,过点过轴的平行线交直线与点,过点作垂直于的延长线于点,求得,即为最小值,即点为所求,求得点的坐标,再求得的长即可;(3)先求得直线BD的解析式,设点,同理求得直线的解析式,求出点的坐标为,证得,分∠QGE为直角、∠EQG为直角、∠QEG为直角,三种情况分别求解即可.【题目详解】(1)∵,∴,,则,故点A、B的坐标分别为:,故答案为:;;(2)①直线经过点和轴上一点,,∴,由(1)得:点A、B的坐标分别为:,则,,设直线AB的解析式为:,∴解得:∴直线AB的解析式为:,∵∴作⊥轴于,∴,∴,∴点的横坐标为,又点在直线AB上,∴,∴点的坐标为;②由(1)得:点A、B的坐标分别为:,则,,∴,,∴点的坐标为,设直线AM的解析式为:,∴解得:∴直线AM的解析式为:,根据题意,平移后点,过点过轴的平行线交直线与点,过点作垂直于的延长线于点,如图1,∴∥,∵,∴,则,为最小值,即点为所求,则点N的横坐标与点的横坐标相同都是,点N在直线AM上,∴,∴点的坐标为,∴,;(3)根据题意得:点的坐标分别为:,设直线的解析式为:,∴,解得:,∴直线BD的解析式为:,设点,同理直线的解析式为:,∵,∴设直线的解析式为:,当时,,则,则直线的解析式为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025签订采购合同范本
- 银行抵押担保借款合同
- 夫妻财产独立协议书
- 溴氨蓝项目风险评估报告
- 广东省东莞市实验中学2024-2025学年高一下学期3月月考英语试卷(含答案)
- 华南理工大学《新时代中国特色社会主义理论与实践研究》2023-2024学年第二学期期末试卷
- 郑州亚欧交通职业学院《品牌策划与管理》2023-2024学年第二学期期末试卷
- 北京科技大学《艺术经济学(二)》2023-2024学年第二学期期末试卷
- 塑料挤吹中空成型机项目安全评估报告
- 广东省韶关市新丰一中2024-2025学年高三下学期第一次模拟-生物试题试卷含解析
- 浙江首考2025年1月普通高等学校招生全国统一考试 历史 含答案
- 山东省临沂市2024-2025学年七年级下学期3月月考地理试题(原卷版+解析版)
- 辽宁省大连市2024-2025学年高三一模语文试题(解析版)
- 《水上客运重大事故隐患判定指南(暂行)》知识培训
- 高中英语新人教版选择性必修四Unit 1 -Unit 3续写词汇和例句
- DB11∕T1135-2024供热系统有限空间作业安全技术规程
- 空中交通流量管理-深度研究
- 积极心理学课件:从理论到实践提升个人幸福感
- 2025年中央部委部分京内直属事业单位招聘笔试参考题库含答案解析
- 药店员工劳动的合同
- 部编版四年级语文《古诗词大会比赛》精美课件
评论
0/150
提交评论