版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省哈尔滨市松北区数学八上期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,每一个直角三角形的两条直角的长分别是3和4,则中间的小正方形和大正方形的面积比是()A.3:4 B.1:25 C.1:5 D.1:102.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙3.人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短 B.垂线段最短C.两直线平行,内错角相等 D.三角形具有稳定性4.下列分解因式正确的是()A. B.C. D.5.已知的三边长为满足条件,则的形状为()A.等腰三角形 B.等腰直角三角形C.等边三角形 D.等腰三角形或直角三角形6.以下列各组线段的长为边,能组成三角形的是()A.2、4、7 B.3、5、2 C.7、7、3 D.9、5、37.小数0.0…0314用科学记数法表示为,则原数中小数点后“0”的个数为()A.4 B.6 C.7 D.88.下列图形中,由∠1=∠2,能得到AB∥CD的是()A. B.C. D.9.当x=()时,互为相反数.A. B. C. D.10.分式的值为,则的值为()A. B. C. D.无法确定11.如图,△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于()A.63° B.113° C.55° D.62°12.若(x2-x+m)(x-8)中不含x的一次项,则m的值为()A.8 B.-8 C.0 D.8或-8二、填空题(每题4分,共24分)13.如图,中,厘米,厘米,点为的中点,如果点在线段上以厘米/秒的速度由点向点运动,同时,点在线段上由点向点运动.若点的运动速度为厘米/秒,则当与全等时,的值为__________.14.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.15.如图,已知CA=BD判定△ABD≌△DCA时,还需添加的条件是__________.16.如图,把△ABC绕点C顺时针旋转得到△A'B'C',此时A′B′⊥AC于D,已知∠A=50°,则∠B′CB的度数是_____°.17.如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为__.18.在等腰△ABC中,AB=AC,∠BAC=20°,点D在直线BC上,且CD=AC,连接AD,则∠ADC的度数为_____.三、解答题(共78分)19.(8分)某校初二数学兴趣小组活动时,碰到这样一道题:“已知正方形,点分别在边上,若,则”.经过思考,大家给出了以下两个方案:(甲)过点作交于点,过点作交于点;(乙)过点作交于点,作交的延长线于点;同学们顺利地解决了该题后,大家琢磨着想改变问题的条件,作更多的探索.(1)对小杰遇到的问题,请在甲、乙两个方案中任选一个,加以证明(如图1);图1图2(2)如果把条件中的“”改为“与的夹角为”,并假设正方形的边长为l,的长为(如图2),试求的长度.20.(8分)我们提供如下定理:在直角三角形中,30°的锐角所对的直角边是斜边的一半,如图(1),Rt△ABC中,∠C=90°,∠A=30°,则BC=AB.请利用以上定理及有关知识,解决下列问题:如图(2),边长为6的等边三角形ABC中,点D从A出发,沿射线AB方向有A向B运动点F同时从C出发,以相同的速度沿着射线BC方向运动,过点D作DE⊥AC,DF交射线AC于点G.(1)当点D运动到AB的中点时,直接写出AE的长;(2)当DF⊥AB时,求AD的长及△BDF的面积;(3)小明通过测量发现,当点D在线段AB上时,EG的长始终等于AC的一半,他想当点D运动到图3的情况时,EG的长始终等于AC的一半吗?若改变,说明理由;若不变,说明理由.21.(8分)如图,AD
为
△ABC
的角平分线,DE⊥AB
于点
E,DF⊥AC
于点
F,连接
EF
交
AD
于点
O.(1)求证:AD垂直平分EF;(2)若∠BAC=,写出DO与AD之间的数量关系,不需证明.22.(10分)在如图所示的平面直角坐标系中,网格小正方形的边长为1.(1)作出关于轴对称的,并写出点的坐标;(2)是轴上的动点,利用直尺在图中找出使周长最短时的点,保留作图痕迹,此时点的坐标是______23.(10分)已知:如图,四边形ABDC,AB=4,AC=3,CD=12,BD=13,∠BAC=90°.求四边形ABDC的面积.24.(10分)在中,,,、分别是的高和角平分线.求的度数.25.(12分)如图,在每个小正方形的边长均为1的方格纸中有线段AB,其中点A、B均在小正方形的顶点上.(1)在方格纸中画出以BC为底的钝角等腰三角形ABC,且点C在小正方形的顶点上;(2)将(1)中的△ABC绕点C逆时针旋转90°得到△DEC(点A的对应点是点D,点B的对应点是点E),画出△CDE;(3)在(2)的条件下,连接BE,请直接写出△BCE的面积.26.如图,是等边三角形,、、分别是、、上一点,且.(1)若,求;(2)如图2,连接,若,求证:.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据勾股定理求得大正方形的边长,然后由正方形的面积公式求得其面积;根据线段间的和差关系求得小正方形的边长,然后由正方形的面积公式求得其面积.【题目详解】由勾股定理得:大正方形的边长,则大正方形的面积=52=25;
小正方形的边长为:4-3=1,则其面积为:12=1.
∴小正方形和大正方形的面积比是.故选:B.【题目点拨】本题考查了以弦图为背景的计算题.本题是用数形结合来证明勾股定理,锻炼了同学们的数形结合的思想方法.2、B【解题分析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3、D【分析】根据三角形的稳定性解答即可.【题目详解】解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性,故选D.【题目点拨】此题考查三角形的性质,关键是根据三角形的稳定性解答.4、C【分析】根据因式分解定义逐项分析即可;【题目详解】A.等式两边不成立,故错误;B.原式=,故错误;C.正确;D.原式=,故错误;故答案选C.【题目点拨】本题主要考查了因式分解的判断,准确应用公式是解题的关键.5、D【分析】把所给的等式能进行因式分解的要因式分解,整理为非负数相加得0的形式,求出三角形三边的关系,进而判断三角形的形状.【题目详解】由,得因为已知的三边长为所以所以=0,或,即,或所以的形状为等腰三角形或直角三角形故选:D【题目点拨】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.6、C【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【题目详解】解:根据三角形任意两边的和大于第三边,可知
A、2+4<7,不能够组成三角形,故A错误;
B、2+3=5,不能组成三角形,故B错误;
C、7+3>7,能组成三角形,故C正确;
D、3+5<9,不能组成三角形,故D错误;
故选:C.【题目点拨】本题考查了能够组成三角形三边的条件,熟练掌握构成三角形的条件是解题的关键.7、C【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题数据“”中的a=3.14,指数n等于−8,所以,需要把3.14的小数点向左移动8位,就得到原数,即可求解.【题目详解】解:3.14×10−8=0.1.原数中小数点后“0”的个数为7,故答案为:C.【题目点拨】本题考查写出用科学记数法表示的原数.将科学记数法a×10n表示的数,“还原”成通常表示的数,当n>0时,就是把a的小数点向右移动n位所得到的数,当n<0时,就是把a的小数点向左移动位所得到的数.8、C【分析】根据平行线的判定定理对各选项进行逐一判断即可.【题目详解】A、由∠1+∠2=180°,得到AB∥CD,故本选项错误;B、∠1=∠2不能判定AB∥CD,故本选项错误;C、由∠1=∠2,得AB∥CD,符合平行线的判定定理,故本选项正确;D、∠1=∠2不能判定AB∥CD,故本选项错误.故选:C.【题目点拨】本题主要主要考查平行线的判定定理,掌握“同位角相等,两直线平行”,“内错角相等,两直线平行”,“同旁内角互补,两直线平行”是解题的关键.9、B【分析】根据相反数的定义列出方程求解即可.【题目详解】由题意得:解得经检验,是原分式方程的解.故选B.【题目点拨】本题目是一道考查相反数定义问题,根据相反数的性质:互为相反数的两个数相加得0.从而列方程,解方程即可.10、B【解题分析】根据分式的值等于1时,分子等于1且分母不为1,即可解出的值.【题目详解】解:分式的值为1,且.故选:B.【题目点拨】本题是已知分式的值求未知数的值,这里注意到分式有意义,分母不为1.11、D【分析】由ABDE,可知∠DEC=∠A,利用三角形内角和定理求出∠A即可.【题目详解】解:∵ABDE,
∴∠DEC=∠A,
∵∠A=180°-∠B-∠C=180°-55°-63°=62°,
∴∠DEC=62°
故选:D.【题目点拨】本题考查三角形内角和定理,平行线的性质等知识,熟练掌握基本知识是解题的关键.12、B【解题分析】(x2-x+m)(x-8)=由于不含一次项,m+8=0,得m=-8.二、填空题(每题4分,共24分)13、2.25或3【分析】已知∠B=∠C,根据全等三角形的性质得出BD=PC,或BP=PC,进而算出时间t,再算出y即可.【题目详解】解:设经过t秒后,△BPD与△CQP全等,∵AB=AC=12厘米,点D为AB的中点,∴BD=6厘米,∵∠B=∠C,BP=yt,CQ=3t,
∴要使△BPD和△CQP全等,则当△BPD≌△CQP时,BD=CP=6厘米,∴BP=3,
∴t=3÷3=1(秒),
y=3÷1=3(厘米/秒),
当△BPD≌△CPQ,∴BP=PC,BD=QC=6,∴t=6÷3=2(秒),
∵BC=9cm,
∴PB=4.5cm,
y=4.5÷2=2.25(厘米/秒).故答案为:2.25或3.【题目点拨】本题考查了等腰三角形的性质和全等三角形的性质,注意:全等三角形的对应边相等.14、36°【分析】由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.【题目详解】∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为36°.15、AB=CD【分析】条件是AB=CD,理由是根据全等三角形的判定定理SSS即可推出△ABD≌△DCA.【题目详解】解:已知CA=BD,AD=AD∴要使△ABD≌△DCA则AB=CD即可利用SSS推出△ABD≌△DCA故答案为AB=CD.【题目点拨】本题主要考查对全等三角形的判定定理的理解和掌握,掌握三角形的判定定理是解题的关键.16、1【分析】由旋转的性质可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA'=1°=∠B′CB.【题目详解】解:∵把△ABC绕点C顺时针旋转得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案为1.【题目点拨】本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.17、(-,-)【解题分析】试题解析:先过点A作AB′⊥OB,垂足为点B′,由垂线段最短可知,当B′与点B重合时AB最短,∵点B在直线y=x上运动,∴△AOB′是等腰直角三角形,过B′作B′C⊥x轴,垂足为C,∴△B′CO为等腰直角三角形,∵点A的坐标为(﹣1,0),∴OC=CB′=OA=×1=,∴B′坐标为(﹣,﹣),即当线段AB最短时,点B的坐标为(﹣,﹣).考点:一次函数综合题.18、50°或40°【分析】利用等腰三角形的性质,等边对等角即可得.【题目详解】解:①当点D在CB的延长线上时,∵AB=AC,∠BAC=20°,∴∠ABC=∠ACB=80°.∵CA=CD,∠ACB=80°,∴∠ADC=∠CAD=50°,②当点D在BC的延长线上时,∵AB=AC,∠BAC=20°,∴∠ABC=∠ACB=80°.∵CA=CD,∠ACB=80°,∠ACB=∠D+∠CAD,∴,∴∠BDA的度数为50°或40°.故答案为:50°或40°.【题目点拨】掌握等腰三角形的性质为本题的关键.三、解答题(共78分)19、(1)见解析;(2).【分析】(1)选乙,过点作交于点,作交的延长线于点,通过证△AMB≌△ADN来得出结论;(2)按(1)的思路也要通过构建全等三角形来求解,可过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N,将△AND绕点A旋转到△APB,不难得出△APM和△ANM全等,那么可得出PM=MN,而MB的长可在直角三角形ABM中根据AB和AM(即HF的长)求出.如果设DN=x,那么NM=PM=BM+x,MC=BC−BM=1−BM,因此可在直角三角形MNC中用勾股定理求出DN的长,进而可在直角三角形AND中求出AN即EG的长.【题目详解】(1)证明:过点作交于点,作交的延长线于点∴,,∵正方形∴,,∵∴∴在和中,∴∴即.(2)解:过点作交于点,过点作交于点,∵,,∴在中,,将绕点旋转到,∵与的夹角为∴∴,即从而∴设,则,,在中,,解得:∴.【题目点拨】本题主要考查了正方形的性质、全等三角形的判定和性质、图形的旋转变换等知识.通过辅助线或图形的旋转将所求的线段与已知的线段构建到一对全等三角形中是本题的基本思路.20、(1)AE=;(2)AD=2,S△BDF=8;(3)不变,理由见解析【分析】(1)根据D为AB的中点,求出AD的长,在Rt△ADE中,利用30°所对的直角边等于斜边的一半求出AE的长即可;(2)根据题意得到设AD=CF=x,表示出BD与BF,在Rt△BDF中,利用30°所对的直角边等于斜边的一半得到BF=2BD,列出关于x的方程,求出方程的解得到x的值,确定出BD与BF的长,利用勾股定理求出DF的长,即可确定出△BDF的面积;(3)不变,理由如下,如图,过F作FM⊥AG延长线于M,由AD=CF,且△ABC为等边三角形,利用等边三角形的性质及锐角三角函数定义得到DE=FM,以及AE=CM,利用AAS得到△DEG与△FMC全等,利用全等三角形对应边相等得到EG=MG,根据AC=AE+EC,等量代换即可得证.【题目详解】解:(1)当D为AB中点时,AD=BD=AB=3,在Rt△ADE中,∠A=60°,∴∠ADE=30°,∴AE=AD=;(2)设AD=x,∴CF=x,则BD=6-x,BF=6+x,∵∠B=60°,∠BDF=90°,∴∠F=30°,即BF=2BD,∴6+x=2×(6-x),解得:x=2,即AD=2,∴BD=4,BF=8,根据勾股定理得:DF=4,∴S△BDF=×4×4=8;(3)不变,理由如下,如图,过F作FM⊥AG延长线于M,∵△ABC为等边三角形,∴∠A=∠ACB=∠FCM=60°,在Rt△ADE和Rt△FCM中,∴Rt△ADE≌Rt△FCM,∴DE=FM,AE=CM,在△DEG和△FMG,,∴△DEG≌△FMG,∴GE=GM,∴AC=AE+EC=CM+CE=GE+GM=2GE.【题目点拨】此题考查了全等三角形的判定与性质,等边三角形的性质,以及含30°直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.21、(1)见解析;(2)【解题分析】试题分析:(1)由AD为△ABC的角平分线,得到DE=DF,推出∠AEF和∠AFE相等,得到AE=AF,即可推出结论;(2)由已知推出∠EAD=30°,得到AD=2DE,在△DEO中,由∠DEO=30°推出DE=2DO,即可推出结论.试题解析:(1)∵AD为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,∴∠DEF=∠DFE,∴∠AEF=∠AFE,∴AE=AF,∴点A、D都在EF的垂直平分线上,∴AD垂直平分EF.(2),理由:∵∠BAC=60°,AD平分∠BAC,∴∠EAD=30°,∴AD=2DE,∠EDA=60°,∵AD⊥EF,∴∠EOD=90°,∴∠DEO=30°∴DE=2DO,∴AD=4DO,∴.【题目点拨】本题主要考查了角平分线的性质,线段垂直平分线的性质,含30°角的直角三角形的性质等知识点,解此题的关键是(1)证AE=AF和DE=DF;(2)证AD=2DE和DE=2DO.22、(1)见解析,;(2)见解析,【分析】(1)分别作出点A,B,C关于轴的对应点A′,B′,C′,再顺次连接即可.
(2)作点A′关于x轴的对称点A″,连接BA″交x轴于P,点P即为所求.【题目详解】解:(1)如图所示,即为所求,点;(2)如图所示,点即为所求.【题目点拨】本题考查作图−轴对称变换,轴对称−最短问题等知识,熟知关于y轴对称的点的坐标特点是解答此题的关键.23、1.【分析】连接BC,利用勾股定理求出BC,再利用勾股定理的逆定理证出△BCD是直角三角形,得到四边形的面积就等于两个直角三角形的面积之和.【题目详解】连接BC.∵∠A=90°,AB=4,AC=3,∴BC=2.∵BC=2,BD=13,CD=12,∴BC2+CD2=BD2,∴△BCD是直角三角形,∴S四边形ABCD=S△BCD+S△ABC=×4×3+×2×12=1.【题目点拨】此题考查的是勾股定理及勾股定理的逆定理,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论