南京鼓楼区宁海中学2024届八上数学期末监测试题含解析_第1页
南京鼓楼区宁海中学2024届八上数学期末监测试题含解析_第2页
南京鼓楼区宁海中学2024届八上数学期末监测试题含解析_第3页
南京鼓楼区宁海中学2024届八上数学期末监测试题含解析_第4页
南京鼓楼区宁海中学2024届八上数学期末监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

南京鼓楼区宁海中学2024届八上数学期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在下列交通标识图案中,不是轴对称图形的是()A. B. C. D.2.如图,A、B是两个居民小区,快递公司准备在公路l上选取点P处建一个服务中心,使PA+PB最短.下面四种选址方案符合要求的是()A. B.C. D.3.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.大正方形的面积为41,小正方形的面积为4,设直角三角形较长直角边长为a,较短直角边长为b.给出四个结论:①a2+b2=41;②a-b=2;③2ab=45;④a+b=1.其中正确的结论是()A.①②③ B.①②③④ C.①③ D.②④4.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点,若AB=6,BC=4,△PBC的周长等于()A.10 B.12 C.14 D.165.已知△ABC为直角坐标系中任意位置的一个三角形,现将△ABC的各顶点横坐标乘以-1,得到△A1B1C1,则它与△ABC的位置关系是()A.关于x轴对称 B.关于y轴对称C.关于原点对称 D.关于直线y=x对称6.等腰三角形的一个外角是100°,则它的顶角的度数为()A.80° B.80°或50° C.20° D.80°或20°7.下列方程:①;②;③;④;⑤;⑥,其中是二元一次方程的是()A.① B.①④ C.①③ D.①②④⑥8.下列分式与分式相等的是()A. B. C. D.9.下列计算正确的是()A.(a2)3=a5 B.(15x2y﹣10xy2)÷5xy=3x﹣2yC.10ab3÷(﹣5ab)=﹣2ab2 D.a﹣2b3•(a2b﹣1)﹣2=10.下列代数式中,属于分式的是()A.﹣3 B. C. D.11.下列图案中是中心对称图形但不是轴对称图形的是()A. B.C. D.12.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.∠A、∠B两内角的平分线的交点处B.AC、AB两边高线的交点处C.AC、AB两边中线的交点处D.AC、AB两边垂直平分线的交点处二、填空题(每题4分,共24分)13.若,则可取的值为__________.14.已知的值为4,若分式中的、均扩大2倍,则的值为__________.15.已知:如图,、都是等腰三角形,且,,,、相交于点,点、分别是线段、的中点.以下4个结论:①;②;③是等边三角形;④连,则平分以上四个结论中正确的是:______.(把所有正确结论的序号都填上)16.的绝对值是________.17.已知直角三角形的两边长分别为5和12,则第三边长的平方是__________.18.11的平方根是__________.三、解答题(共78分)19.(8分)(Ⅰ)计算:(﹣)×+|﹣2|﹣()﹣1(Ⅱ)因式分解:(a﹣4b)(a+b)+3ab(Ⅲ)化简:.20.(8分)已知,在平面直角坐标系中的位置如图所示.(1)把向下平移2个单位长度得到,请画出;(2)请画出关于轴对称的,并写出的坐标;(3)求的面积.21.(8分)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠ACF的度数.22.(10分)若3a=6,9b=2,求32a+4b的值;(2)已知xy=8,x﹣y=2,求代数式x3y﹣x2y2+xy3的值.23.(10分)如图,在△ABC中,AC⊥BC,AD平分∠BAC,DE⊥AB于点E,求证:直线AD是CE的垂直平分线.24.(10分)今年是“五四”运动周年,为进一步弘扬“爱国、进步、民主、科学”的五四精神,引领广大团员青年坚定理想信念,某市团委、少先队共同举办纪念“五四运动周年”读书演讲比赛,甲同学代表学校参加演讲比赛,位评委给该同学的打分(单位:分)情况如下表:评委评委1评委2评委3评委4评委5评委6评委7打分(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数.25.(12分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=1.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)26.先化简再求值:,其中x=.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据轴对称图形的概念对各个选项进行判断即可.【题目详解】A、B、C中的图案是轴对称图形,D中的图案不是轴对称图形,故选:D.【题目点拨】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,也可以说这个图形关于这条直线(成轴)对称.2、A【分析】根据轴对称的性质和线段的性质即可得到结论.【题目详解】解:根据题意得,在公路l上选取点P,使PA+PB最短.则选项A符合要求,故选:A.【题目点拨】本题考查轴对称的性质的运用,最短路线问题数学模式的运用,也考查学生的作图能力,运用数学知识解决实际问题的能力.3、A【分析】观察图形可知,大正方形的边长为直角三角形的斜边长,根据勾股定理即可得到大正方形的边长,从而得到①正确,根据题意得4个直角三角形的面积=4××ab=大正方形的面积-小正方形的面积,从而得到③正确,根据①③可得②正确,④错误.【题目详解】解:∵直角三角形较长直角边长为a,较短直角边长为b,∴斜边的平方=a2+b2,由图知,大正方形的边长为直角三角形的斜边长,∴大正方形的面积=斜边的平方=a2+b2,即a2+b2=41,故①正确;根据题意得4个直角三角形的面积=4××ab=2ab,4个直角三角形的面积=S大正方形-S小正方形=41-4=45,即2ab=45,故③正确;由①③可得a2+b2+2ab=41+45=14,即(a+b)2=14,∵a+b>0,∴a+b=,故④错误,由①③可得a2+b2-2ab=41-45=4,即(a-b)2=4,∵a-b>0,∴a-b=2,故②正确.故选A.【题目点拨】本题考查了勾股定理的运用,完全平方公式的运用等知识.熟练运用勾股定理是解题的关键.4、A【分析】先根据等腰三角形的性质得出AC=AB=6,再根据线段垂直平分线的性质得出AP=BP,故AP+PC=AC,由此即可得出结论.【题目详解】解:∵△ABC中,AB=AC,AB=6,∴AC=6,∵AB的垂直平分线交AC于P点,∴BP+PC=AC,∴△PBC的周长=(BP+PC)+BC=AC+BC=6+4=1.故选:A.【题目点拨】本题考查的是线段垂直平分线的性质,三角形的周长计算方法,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.5、B【分析】已知平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(−x,y),从而求解.【题目详解】根据轴对称的性质,∵横坐标都乘以−1,∴横坐标变成相反数,根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,∴△ABC与△A′B′C′关于y轴对称,故选:B.【题目点拨】本题主要考查了平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,比较简单.6、D【分析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【题目详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【题目点拨】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.7、B【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程来进行解答即可;【题目详解】解:①该方程中含有两个未知数,并且未知数的项的次数都是1的整式方程,所以它是二元一次方程;②该方程是分式方程,所以它不是二元一次方程;③该方程中的未知数的次数是2,所以它不是二元一次方程;④由原方程得到2x+2y=0,该方程中含有两个未知数,并且未知数的项的次数都是1的整式方程,所以它是二元一次方程;⑤该方程中含有一个未知数,所以它不是二元一次方程;⑥该方程是分式方程,所以它不是二元一次方程;综上所述,属于二元一次方程的是:①,④;故答案是:B.【题目点拨】本题主要考查了二元一次方程的定义,掌握二元一次方程的定义是解题的关键.8、B【分析】根据分式的基本性质即可求出答案.【题目详解】解:A、是最简分式,与不相等,故选项错误;B、=与相等,故选项正确;C、是最简分式,与不相等,故选项错误;D、=与不相等,故选项错误;故选B.【题目点拨】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.9、B【分析】根据合并同类项、幂的乘方和积的乘方进行计算即可.【题目详解】A、(a2)3=a6,故A错误;B、(15x2y﹣10xy2)÷5xy=3x﹣2y,故B正确;C、10ab3÷(﹣5ab)=﹣2b2,故C错误;D、a﹣2b3•(a2b﹣1)﹣2=,故D错误;故选B.【题目点拨】本题考查了整式的混合运算,掌握合并同类项、幂的乘方和积的乘方的运算法则是解题的关键.10、D【分析】根据分式的定义即可求出答案.【题目详解】解:是分式;故选:D.【题目点拨】本题考查分式的定义,解题的关键是正确理解分式的定义,本题属于基础题型.11、C【分析】根据轴对称图形与中心对称图形的定义求解.【题目详解】解:A、是中心对称图形,也是轴对称图形,不符合题意;B、不是中心对称图形,是轴对称图形,不符合题意;C、是中心对称图形,不是轴对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选C.【题目点拨】本题考查了轴对称图形与中心对称图形的定义,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.12、D【分析】根据线段垂直平分线的性质即可得出答案.【题目详解】解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在AC、AB两边垂直平分线的交点处,故选:D.【题目点拨】本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.二、填空题(每题4分,共24分)13、或2【分析】直接利用零指数幂的性质以及有理数的乘方运算法则得出答案.【题目详解】解:∵,

∴当1-3x=2时,x=,原式=()2=1,

当x=2时,原式=11=1.

故答案为:或2.【题目点拨】本题考查零指数幂的性质以及有理数的乘方运算,正确掌握运算法则是解题关键.14、1【分析】首先把分式中的x、y均扩大2倍,然后约分化简,进而可得答案.【题目详解】解:分式中的x、y均扩大2倍得:=2×4=1,

故答案为:1.【题目点拨】本题考查了分式的基本性质,关键是掌握分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.15、①②④【分析】①根据全等三角形的判定定理得到△ACD≌△BCE(SAS),由全等三角形的性质得到AD=BE;故①正确;

②设CD与BE交于F,根据全等三角形的性质得到∠ADC=∠BEC,得到∠DOE=∠DCE=α,根据平角的定义得到∠BOD=180°−∠DOE=180°−α,故②正确;

③根据全等三角形的性质得到∠CAD=∠CBE,AD=BE,AC=BC根据线段的中点的定义得到AM=BN,根据全等三角形的性质得到CM=CN,∠ACM=∠BCN,得到∠MCN=α,推出△MNC不一定是等边三角形,故③不符合题意;

④过C作CG⊥BE于G,CH⊥AD于H,根据全等三角形的性质得到CH=CG,根据角平分线的判定定理即可得到OC平分∠AOE,故④正确.【题目详解】解:①∵CA=CB,CD=CE,∠ACB=∠DCE=α,

∴∠ACB+∠BCD=∠DCE+∠BCD,

∴∠ACD=∠BCE,

在△ACD和△BCE中,

∴△ACD≌△BCE(SAS),

∴AD=BE;故①正确;

②设CD与BE交于F,

∵△ACD≌△BCE,

∴∠ADC=∠BEC,

∵∠CFE=∠DFO,

∴∠DOE=∠DCE=α,

∴∠BOD=180°−∠DOE=180°−α,故②正确;

③∵△ACD≌△BCE,

∴∠CAD=∠CBE,AD=BE,AC=BC

又∵点M、N分别是线段AD、BE的中点,

∴AM=AD,BN=BE,

∴AM=BN,

在△ACM和△BCN中,

∴△ACM≌△BCN(SAS),

∴CM=CN,∠ACM=∠BCN,

又∠ACB=α,

∴∠ACM+∠MCB=α,

∴∠BCN+∠MCB=α,

∴∠MCN=α,

∴△MNC不一定是等边三角形,故③不符合题意;

④如图,过C作CG⊥BE于G,CH⊥AD于H,

∴∠CHD=∠ECG=90°,∵∠CEG=∠CDH,CE=CD,

∴△CGE≌△CHD(AAS),

∴CH=CG,

∴OC平分∠AOE,故④正确,

故答案为①②④.【题目点拨】本题综合考查了全等三角形的性质和判定,三角形的内角和定理,等边三角形的性质和判定等知识点的应用,解此题的关键是根据性质进行推理,此题综合性比较强,有一定的代表性.16、【分析】根据绝对值的意义,即可得到答案.【题目详解】解:,故答案为:.【题目点拨】本题考查了绝对值的意义,解题的关键是熟记绝对值的意义.17、169或1【分析】求第三边的长必须分类讨论,分12是斜边或直角边两种情况,然后利用勾股定理求解.【题目详解】分两种情况:

①当5和12为直角边长时,

由勾股定理得:第三边长的平方,即斜边长的平方;

②12为斜边长时,

由勾股定理得:第三边长的平方;

综上所述:第三边长的平方是169或1;

故答案为:169或1.【题目点拨】本题考查了勾股定理;熟练掌握勾股定理,并能进行推理计算是解决问题的关键,注意分类讨论,避免漏解.18、【解题分析】根据平方根的定义即可求解.【题目详解】解:11的平方根为.【题目点拨】本题考查了平方根的定义,解题的关键在于平方根和算术平方根的区别和联系.三、解答题(共78分)19、(Ⅰ)﹣3;(Ⅱ)(a+2b)(a﹣2b);(Ⅲ)﹣.【解题分析】试题分析:(Ⅰ)根据负整数指数幂的意义、绝对值的意义和二次根式的乘法法则计算;(Ⅱ)先展开合并得到原式=a2-4b2,然后利用平方差公式进行因式分解;(Ⅲ)先把括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分得到原式=-,最后进行通分即可.试题解析:(Ⅰ)原式=-+2--2=-2+2--2=-3;(Ⅱ)原式=a2+ab-4ab-4b2+3ab=a2-4b2=(a+2b)(a-2b);(Ⅲ)原式===-==-.20、(1)见解析;(2)(4,-1);(3)6.1.【分析】(1)首先确定A、B、C三点向下平移2个单位长度后的对应点位置,然后再连接即可;

(2)首先确定A1、B1、C1关于y轴对称的对称点,然后再连接即可;

(3)把△ABC放在一个矩形内,利用矩形的面积减去周围多余三角形的面积即可.【题目详解】解:(1)如图所示:

(2)如图所示:A2的坐标(4,-1);

(3)△ABC的面积:3×1-×2×3-×1×1-×2×3=11-3-2.1-3=6.1.【题目点拨】本题主要考查了作图--轴对称变换和平移变换,关键是找出组成图形的关键点平移后的对应点位置.21、(1)详见解析;(2)65°.【分析】(1)运用HL定理直接证明△ABE≌△CBF,即可解决问题.(2)证明∠BAE=∠BCF=25°;求出∠ACB=45°,即可解决问题.【题目详解】证明:(1)在Rt△ABE与Rt△CBF中,,∴△ABE≌△CBF(HL).(2)∵△ABE≌△CBF,∴∠BAE=∠BCF=20°;∵AB=BC,∠ABC=90°,∴∠ACB=45°,∴∠ACF=65°.【题目点拨】该题主要考查了全等三角形的判定及其性质的应用问题;准确找出图形中隐含的相等或全等关系是解题的关键.22、(1)144;(2)1.【解题分析】试题分析:(1)直接利用同底数幂的乘法运算法则结合幂的乘方运算法则化简求出答案;(2)首先提取公因式xy再利用完全平方公式分解因式,进而将已知代入求出答案.解:(1)∵3a=6,9b=2,∴32a+4b=32a×34b=(3a)2×(32b)2=36×4=144;(2)∵xy=8,x﹣y=2,∴原式=xy(x2﹣2xy+y2)=xy(x﹣y)2=×8×22=1.考点:提公因式法与公式法的综合运用;同底数幂的乘法;幂的乘方与积的乘方.23、见解析.【分析】由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,而AD平分∠BAC,利用等腰三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论