版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.1.1多边形的内角和顶点边内角对角线回顾思考外角1、在平面内,_____________________叫做多边形。2、在多边形中连接_________________的线段叫做多边形的对角线。3、三角形的内角和是_____度.4、你能够利用三角形的内角和求四边形的内角和吗?试试看?ABCD思路:多边形问题转化为三角形问题来解决.四边形的内角和为3600由一些线段首尾顺次相接组成的图形多边形不相邻的两个顶点的线段1800ACB如图,三角形ABC的内角和是多少度?探索多边形的内角和探索多边形的内角和ABCD四边形的内角和是多少度?图中有几个三角形?探索多边形的内角和ABDCE
五边形的内角和是多少度?图中有几个三角形?探索多边形的内角和ABDCFE六边形的内角和是多少度?图中有几个三角形?多边形的边数34567…n分成三角形的个数…多边形的内角和…1180°
2345360°540°720°900°n-2
(n-2)×180°
n边形的内角和=(n-2)·180°
探索多(n)边形的内角和多了什么?如何处理?ABCDABCDEABCDEF
这种分割方式,将多边形分成n-1个三角形,故所有三角形的内角和为(n-1)×180°,边上一点周围所形成的平角不是多边形的内角,因此n边形的内角和为
(n-1)×180°-180°=(n-2)×180°ABCDABCDEABCDEF
该图中n边形共有n个三角形,故所有三角形内角和为n×180°,但每个图中都有一个以红圈圈住的点,它是一个圆周角360°,因此n边形的内角和为
n×180°-360°=(n-2)×180°多了什么?如何处理?得到定理:n边形的内角和等于(n-2)·180
.说明:(1)多边形的内角和仅与边数有关,与多边形的大小、形状无关;(2)强调凸多边形的内角
的范围:0
<
<180
.结论:例1.求八边形的内角和的度数.
解(n-2)×180°=(8-2)×180°=1080°分析:n边形的内角和公式为(n-2)180°,现在知道这个多边形的边数是,代入这个公式既可求出.老师,可以用计算器吗?例2.已知多边形的内角和的度数为900°,则这个多边形的边数为________解(n-2)×180°=900°
(n-2)=900°/180°
(n-2)=5
n=5+2n=77哇!这么简单呀!例2:一个正多边形的一个内角为150°,你知道它是几边形吗?
解:设这个多边形为n边形,根据题意得:(n-2)×180=150n
n=12答:这个多边形是12边形。另解:由于多边形外角和等于360°
而这个正多边形的每个外角都等于
180°-150°=30°,所以这个正多边形的边数等于
360°÷30°=12。
例3.已知在一个十边形中,九个内角的和的度数是1290°,求这个十边形的另一个内角的度数.解:(10-2)×180°=1440°
则十边形的另一个内角的度数为
1440°-1290°=150°先求出十边形的内角和再减去1290°,就可以得出.二、多边形及其相关概念7.正多边形各个角都相等,各条边都相等的多边形叫做正多边形.那么对于正多边形来说,又遇到怎样的问题呢?因为正多边形的每个角相等,所以知道正多边形的边数,就可以求出每一个内角的度数.(n-2)×180°/n例4.正五边形的每一个内角等于_____解:(n-2)×180°/n=(5-2)×180°/5=540°/5=108°例5.如果一个正多边形的一个内角等于120°,则这个多边形的边数是_____解:120°n=(n-2)×180°120°n=n×180°-360°
60°n=360°
n=6例9.正五边形的每一个外角等于___.每一个内角等于_____,72°144°例10.如果一个正多边形的一个内角等于120°,则这个多边形的边数是_____6例11.如果一个正多边形的一个内角等于150°,则这个多边形的边数是_____A.12B.9C.8D.7A例12.如果一个多边形的每一个外角等于30°,则这个多边形的边数是_____12巩固练习:3、多边形内角和为1080°则它是()边形。4、多边形内角和为1800°则它是()边形。1、七边形内角和为()2、十边形内角和为()5、有一个正多边形的外角是60°,那么该正多边形是正()边形。思考一:一个三角形中,它的内角最多可以有几个锐角?为什么?思考二:一个四边形中,它的内角最多可以有几个锐角?为什么?思考三:一个多边形中,它的内角最多可以有几个锐角?为什么?一个多边形中,它的外角最多可以有几个钝角?3小结:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度医疗设备研发与应用合同3篇
- 二零二五版私募股权投资基金股权收购合同2篇
- 二零二五版企业股权激励项目执行与改进合同2篇
- 二零二五年度房产投资分期付款合同模板3篇
- 二零二五年蔬菜种子进口合同2篇
- 二零二五年度酒楼市场拓展与股权激励方案合同2篇
- 二零二五年模具生产项目质量保证合同3篇
- 二零二五版智能家居货款担保合同范本3篇
- 二零二五年船舶抵押借款合同范本修订版3篇
- 二零二五年户外活动用安全护栏租赁合同3篇
- (完整版)铝矾土进口合同中英文
- 《庖丁解牛》获奖课件(省级公开课一等奖)-完美版PPT
- 化工园区危险品运输车辆停车场建设标准
- 6月大学英语四级真题(CET4)及答案解析
- 气排球竞赛规则
- 电梯维修保养报价书模板
- 危险化学品目录2023
- FZ/T 81024-2022机织披风
- GB/T 33141-2016镁锂合金铸锭
- JJF 1069-2012 法定计量检定机构考核规范(培训讲稿)
- 综合管廊工程施工技术概述课件
评论
0/150
提交评论