




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市南开融侨中学2024届数学八上期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,32.下列尺规作图分别表示:①作一个角的平分线;②作一个角等于已知角;③作一条线段的垂直平分线.其中作法正确的是()①②③A.①② B.①③ C.②③ D.①②③3.如图,两车从南北方向的路段的端出发,分别向东、向西行进相同的距离到达两地,若与的距离为千米,则与的距离为()A.千米 B.千米 C.千米 D.无法确定4.已知点A和点B,以点A和点B为两个顶点作等腰直角三角形,则一共可作出()A.3个 B.4个 C.6个 D.7个5.如图,在中,,,的垂直平分线交于点,则的度数为()A. B. C. D.6.如果一个多边形的每个内角的度数都是108°,那么这个多边形的边数是()A.3 B.4 C.5 D.67.下列运算正确()A.a•a5=a5 B.a7÷a5=a3C.(2a)3=6a3 D.10ab3÷(﹣5ab)=﹣2b28.如图是作的作图痕迹,则此作图的已知条件是()A.已知两边及夹角 B.已知三边 C.已知两角及夹边 D.已知两边及一边对角9.将点向左平移3个长度单位,再向上平移2个长度单位得到点,则点的坐标是()A. B. C. D.10.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是().A.带其中的任意两块去都可以 B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了 D.带1、4或2、4或3、4去均可11.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A. B.C. D.12.如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于()A.35° B.45° C.60° D.100°二、填空题(每题4分,共24分)13.若,则的值为______.14.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=_____.15.已知,、、是的三边长,若,则是_________.16.如图,△ABC中,EF是AB的垂直平分线,与AB、AC分别交于点D、F,BF=8,CF=2,则AC=______.17.直线y=x+1与x轴交于点D,与y轴交于点A1,把正方形A1B1C1O1、A2B2C2C1和A3B3C3C2按如图所示方式放置,点A2、A3在直线y=x+1上,点C1、C2、C3在x轴上,按照这样的规律,则正方形A2020B2020C2020C2019中的点B2020的坐标为_____.18.(2016湖南省株洲市)已知A、B、C、D是平面坐标系中坐标轴上的点,且△AOB≌△COD.设直线AB的表达式为y1=k1x+b1,直线CD的表达式为y2=k2x+b2,则k1k2=______.三、解答题(共78分)19.(8分)如图,的三个顶点的坐标分别是,,.(1)直接写出点、、关于轴对称的点、、的坐标;,,;(2)在图中作出关于轴对称的图形.(3)求的面积.20.(8分)计算:(1);(2).21.(8分)如图,已知点B、E、C、F在同一条直线上,AB=DE,∠A=∠D,AC∥DF.求证:BE=CF.22.(10分)如图,已知函数y=x+1和y=ax+3的图象交于点P,点P的横坐标为1,(1)关于x,y的方程组的解是;(2)a=;(3)求出函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积.23.(10分)已知:如图,在△ABC中,AD⊥BC,垂足是D,E是线段AD上的点,且AD=BD,DE=DC.⑴求证:∠BED=∠C;⑵若AC=13,DC=5,求AE的长.24.(10分)如图1,在平面直角坐标系中,已知点,点,为线段上一点,且满足.(1)求直线的解析式及点的坐标;(2)如图2,为线段上一动点,连接,与交于点,试探索是否为定值?若是,求出该值;若不是,请说明理由;(3)点为坐标轴上一点,请直接写出满足为等腰三角形的所有点的坐标.25.(12分)金堂县在创建国家卫生城市的过程中,经调查发现居民用水量居高不下,为了鼓励居民节约用水,拟实行新的收费标准.若每月用水量不超过12吨,则每吨按政府补贴优惠价元收费;若每月用水量超过12吨,则超过部分每吨按市场指导价元收费.毛毛家家10月份用水22吨,交水费59元;11月份用水17吨,交水费1.5元.(1)求每吨水的政府补贴优惠价和市场指导价分别是多少元?(2)设每月用水量为吨,应交水费为元,请写出与之间的函数关系式;(3)小明家12月份用水25吨,则他家应交水费多少元?26.(1)仔细观察如图图形,利用面积关系写出一个等式:a2+b2=.(2)根据(1)中的等式关系解决问题:已知m+n=4,mn=﹣2,求m2+n2的值.(3)小明根据(1)中的关系式还解决了以下问题:“已知m+=3,求m2+和m3+的值”小明解法:请你仔细理解小明的解法,继续完成:求m5+m﹣5的值
参考答案一、选择题(每题4分,共48分)1、B【解题分析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D、,不可以构成直角三角形,故本选项错误.故选B.考点:勾股定理的逆定理.2、A【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线的作法进而判断即可得出答案.【题目详解】解:①作一个角的平分线的作法正确;
②作一个角等于已知角的方法正确;
③作一条线段的垂直平分线,缺少另一个交点,故作法错误;
故选:A.【题目点拨】本题主要考查了基本作图,正确把握作图方法是解题关键.3、A【分析】先由条件证明,再根据全等三角形的性质即可得出结论.【题目详解】解:由题意得:AC=AD,,∴在和中∴∴∴与的距离为千米故选:A.【题目点拨】本题全等三角形的应用,读懂图信息,将文字语言转化为几何语言是解题关键.4、C【分析】根据等腰直角三角形的性质,分AB是直角边和斜边两种情况作出图形即可得解.【题目详解】解:如图,以点A和点B为两个顶点作等腰直角三角形,
一共可作出6个.
故选C.【题目点拨】本题考查了等腰直角三角形,作出图形,利用数形结合的思想求解更形象直观.5、A【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【题目详解】解:∵AB=AC,∠A=30°,
∴∠ABC=∠ACB=75°,
∵AB的垂直平分线交AC于D,
∴AD=BD,
∴∠A=∠ABD=30°,
∴∠BDC=60°,
∴∠CBD=180°-75°-60°=45°.
故选:A.【题目点拨】此题主要考查线段的垂直平分线的性质和等腰三角形的性质;利用三角形外角的性质求得求得∠BDC=60°是解答本题的关键.本题的解法很多,用底角75°-30°更简单些.6、C【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【题目详解】解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选C.【题目点拨】此题主要考查了多边形的外角与内角,关键是掌握多边形的外角与它相邻的内角互补.7、D【解题分析】选项A,原式=;选项B,原式=;选项C,原式=;选项D,原式=.故选D.8、C【分析】观察的作图痕迹,可得此作图的条件.【题目详解】解:观察的作图痕迹,可得此作图的已知条件为:∠α,∠β,及线段AB,故已知条件为:两角及夹边,故选C.【题目点拨】本题主要考查三角形作图及三角形全等的相关知识.9、C【分析】根据平面直角坐标系中,点的平移与点的坐标之间的关系,即可得到答案.【题目详解】∵点向左平移3个长度单位,再向上平移2个长度单位得到点,∴点的坐标是(-5,-1),故选C.【题目点拨】本题主要考查平面直角坐标系中,点的平移与点的坐标之间的关系,掌握点的平移与点的坐标之间的关系,是解题的关键.10、D【解题分析】试题分析:②④虽没有原三角形完整的边,又没有角,但延长可得出原三角形的形状;带①、④可以用“角边角”确定三角形;带③、④也可以用“角边角”确定三角形.解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选D.点评:本题考查了全等三角形判定的应用;确定一个三角形的大小、形状,可以用全等三角形的几种判定方法.做题时要根据实际问题找条件.11、A【分析】根据轴对称图形的概念求解.【题目详解】A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.【题目点拨】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,折叠后两边可重合.12、D【分析】要求∠E的大小,先要求出△DFE中∠D的大小,根据全等三角形的性质可知∠D=∠A=45°,然后利用三角形的内角和可得答案.【题目详解】解:∵△ABC≌△DEF,∠A=45°,∠F=35°∴∠D=∠A=45°∴∠E=180°-∠D-∠F=100°.故选D.二、填空题(每题4分,共24分)13、1【分析】根据题意把(m-n)看作一个整体并直接代入代数式进行计算即可得解.【题目详解】解:∵,∴,==(-1)1-(-1),=1+1,=1.故答案为:1.【题目点拨】本题考查代数式求值,熟练掌握整体思想的利用是解题的关键.14、1【解题分析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=3,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=AM=1.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴DN=AM=3,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP=AM=1,故答案为1.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.15、等腰直角三角形【分析】首先根据题意由非负数的性质可得:a-b=0,a2+b2-c2=0,进而得到a=b,a2+b2=c2,根据勾股定理逆定理可得△ABC的形状为等腰直角三角形.【题目详解】解:∵|a-b|+|a2+b2-c2|=0,
∴a-b=0,a2+b2-c2=0,
解得:a=b,a2+b2=c2,
∴△ABC是等腰直角三角形.
故答案为:等腰直角三角形.【题目点拨】本题考查勾股定理逆定理以及非负数的性质,解题关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.16、1【分析】根据垂直平分线的性质可得AF=BF=8,然后根据已知条件即可求出结论.【题目详解】解:∵EF是AB的垂直平分线,BF=8,∴AF=BF=8∵CF=2,∴AC=AF+CF=1故答案为:1.【题目点拨】此题考查的是垂直平分线的性质,掌握垂直平分线的性质找到相等线段是解决此题的关键.17、(22020﹣1,22019)【分析】求出直线y=x+1与x轴、y轴的交点坐标,进而确定第1个正方形的边长,再根据等腰直角三角形的性质,得出第2个、第3个……正方形的边长,进而得出B1、B2、B3……的坐标,根据规律得到答案.【题目详解】解:直线y=x+1与x轴,y轴交点坐标为:A1(0,1),即正方形OA1B1C1的边长为1,∵△A1B1A2、△A2B2A3,都是等腰直角三角形,边长依次为1,2,4,8,16,∴B1(1,1),B2(3,2),B3(7,4),B4(15,8),即:B1(21﹣1,20),B2(22﹣1,21),B3(23﹣1,22),B4(24﹣1,23),故答案为:B2020(22020﹣1,22019).【题目点拨】考查一次函数的图象和性质,正方形的性质、等腰直角三角形的性质以及找规律等知识,探索和发现点B的坐标的概率是得出答案的关键.18、1.【题目详解】试题解析:设点A(0,a)、B(b,0),
∴OA=a,OB=-b,
∵△AOB≌△COD,
∴OC=a,OD=-b,
∴C(a,0),D(0,b),
∴k1=,k2=,
∴k1•k2=1,
【题目点拨】本题考查了两直线相交于平行,全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.三、解答题(共78分)19、(1);;;(2)图见解析;(3)1【分析】(1)根据关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论;(2)先分别找到A、B、C关于y轴的对称点,然后连接、、即可;(3)用一个长方形框住△ABC,再利用长方形的面积减去三个直角三角形的面积即可.【题目详解】解:(1)根据关于x轴对称的两点坐标关系:关于x轴的对称点的坐标为;关于x轴的对称点的坐标为;关于x轴的对称点的坐标为.故答案为:;;.(2)先分别找到A、B、C关于y轴的对称点,然后连接、、,如下图所示:即为所求;(3)如上图所示,用一个长方形框住△ABC,由图可知:S△ABC=3×4-=1.【题目点拨】此题考查的是求关于x轴对称点的坐标、画关于y轴对称的图形和求网格中三角形的面积,掌握关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数、关于y轴对称的图形的画法是解决此题的关键.20、(1)0;(2)【分析】(1)先化简二次根式,再进行二次根式乘除计算,最后计算即可;(2)先进行分母有理化化简,再合并同类二次根式即可.【题目详解】解:(1)原式====0;(2)原式====【题目点拨】本题是对二次根式计算的综合考查,熟练掌握二次根式化简及二次根式乘除是解决本题的关键.21、证明见解析.【分析】欲证BE=CF,则证明两三角形全等,已经有两个条件,只要再有一个条件就可以了,而AC∥DF可以得出∠ACB=∠F,条件找到,全等可证.根据全等三角形对应边相等可得BC=EF,都减去一段EC即可得证.【题目详解】∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,∴△ABC≌△DEF(AAS);∴BC=EF,∴BC﹣CE=EF﹣CE,即BE=CF.考点:全等三角形的判定与性质.22、(1);(2)-1;(3)2【分析】(1)先求出点P为(1,2),再把P点代入解析式即可解答.(2)把P(1,2)代入y=ax+3,即可解答.(3)根据y=x+1与x轴的交点为(﹣1,0),y=﹣x+3与x轴的交点为(3,0),即可得到这两个交点之间的距离,再根据三角形的面积公式,即可解答.【题目详解】(1)把x=1代入y=x+1,得出y=2,函数y=x+1和y=ax+3的图象交于点P(1,2),即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为;(2)把P(1,2)代入y=ax+3,得2=a+3,解得a=﹣1.故答案为﹣1;(3)∵函数y=x+1与x轴的交点为(﹣1,0),y=﹣x+3与x轴的交点为(3,0),∴这两个交点之间的距离为3﹣(﹣1)=2,∵P(1,2),∴函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积为:×2×2=2.【题目点拨】此题考查一次函数与二元一次方程,解题关键在于把已知点代入解析式求解.23、1【分析】(1)可以通过证明△ADC≌△BDE可得∠BED=∠C;(2)先根据勾股定理求出AD,由上一问△ADC≌△BDE可得ED=EC,AD=BD,即可求出AE.【题目详解】证明:(1)∵AD⊥BC,∴∠BDE=∠ADC=90°,∵在△ADC和△BDE中,,∴△ADC≌△BDE,∴∠BED=∠C.(2)∵∠ADC=90°,AC=13,DC=5,∴AD=12∵△BDE≌△ADC,DE=DC=5∴AE=AD-DE=12-5=1.【题目点拨】题目中出现较多的角相等,边相等可以考虑用三角形全等的方法解决问题.24、(1);(1)是定值,定值为1;(3),,,,,,【解题分析】(1)利用“待定系数法”可求出解析式,然后过点C作CF⊥OB,利用等腰三角形的性质求出点C横坐标,再利用解析式求出点C坐标即可;(1)先利用勾股定理计算出AB、OC长,从而证明OC=BC=AC,再利用“等边对等角”得到∠CAO=∠AOC,最后利用三角形外角定理即可得到结果;(3)分BP=BC、CP=CB、PB=PC三种情况讨论,分别进行计算即可.【题目详解】解:(1)设:,代入点、可得,解得:,即:,设,如图作,∵,,∴,∴,即,将点代入可得:,∴;(1)是定值,定值为1.由(1)可得,,∴在中,,又∵在,,,∴,∴,∴,∴,∴,又∵,∴,∴,又∵,∴;(3)①BC=BP=时:当点P在x轴上时,OP=或,此时,,当点P在y轴上时,在Rt△OBP中,OP=,此时,,②CB=CP=时:由(1)知OC=,∴CP=OC,此时,③PB=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 漯河食品职业学院《微观高级社会工作实务》2023-2024学年第二学期期末试卷
- 山西警官职业学院《学前保教管理》2023-2024学年第二学期期末试卷
- 宁夏工业职业学院《景观设计与规划》2023-2024学年第二学期期末试卷
- 电子乐器演奏技巧与风格研究考核试卷
- 硅材料在半导体行业的质量控制考核试卷
- 滑动轴承的表面处理新技术探讨考核试卷
- 碳酸饮料市场趋势预测与展望考核试卷
- 硫酸钾在动物营养补充中的应用研究考核试卷
- 照明设备在舞台剧中的情感传递考核试卷
- 海底隧道工程中的施工成本分析考核试卷
- 大班科学课件《灯泡亮了》
- 2024年新药研发独家授权合同
- 全国各省市一览表
- DBJ33-T 1325-2024 螺栓连接全装配混凝土墙板结构技术规程
- 《铰链四杆机构》(课件)
- 住宅物业消防安全管理 XF1283-2015知识培训
- 幼儿绘本赏析课件:如果你不想去幼儿园
- DL∕T 5851-2022 大坝安全视频监控系统技术规范
- DL∕ T 1040-2007电网运行准则
- CJT 206-2005 城市供水水质标准
- 2024年咸阳市县及县以下医疗机构定向招考重点基础提升难、易点模拟试题(共500题)附带答案详解
评论
0/150
提交评论