




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省廊坊市霸州市部分学校2024届八上数学期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F2.在中,,点是边上两点,且垂直平分平分,则的长为()A. B. C. D.3.下列交通标识图中,是轴对称图形的是()A. B. C. D.4.设A=(x−2)(x−3),B=(x−1)(x−4),则A、B的关系为()A.A>B B.A<B C.A=B D.无法确定5.我市某中学九年级(1)班为开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学捐款情况如下表:捐款(元)51015202530人数361111136问该班同学捐款金额的众数和中位数分别是()A.13,11 B.25,30 C.20,25 D.25,206.如图,在△ABC中,∠B=90°,AB=6,BC=8,AD为∠BAC的角平分线,则三角形ADC的面积为()A.3 B.10 C.12 D.157.下列命题中,真命题是()A.过一点且只有一条直线与已知直线平行B.两个锐角的和是钝角C.一个锐角的补角比它的余角大90°D.同旁内角相等,两直线平行8.计算的结果是()A. B. C. D.9.如图,在中,过点作于,则的长是()A. B. C. D.10.下列运算正确的是()A.3a–2a=1 B.a2·a3=a6 C.(a–b)2=a2–2ab+b2 D.(a+b)2=a2+b211.如图,长方体的长为,宽为,高为,点到点的距离为,一只蚂蚁如果要沿着长方体的表面从点爬到点,需要爬行的最短距离是()A.4 B.5 C. D.12.在实数中,无理数的个数为()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.若分式的值为0,则x=____.14.如图,在中,,,,,的平分线相交于点E,过点E作交AC于点F,则;15.估算:____.(结果精确到)16.在中,,,则面积为_______.17.20192﹣2020×2018=_____.18.已知a,b互为相反数,并且3a-2b=5,则a2+b2=________.三、解答题(共78分)19.(8分)已知:如图,在矩形ABCD中,AB=6,BC=8,E为直线BC上一点.(1)如图1,当E在线段BC上,且DE=AD时,求BE的长;(2)如图2,点E为BC延长长线上一点,若BD=BE,连接DE,M为ED的中点,连接AM,CM,求证:AM⊥CM;(3)如图3,在(2)条件下,P,Q为AD边上的两个动点,且PQ=5,连接PB、MQ、BM,求四边形PBMQ的周长的最小值.20.(8分)如图所示,在中,,(1)用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)(2)连接AP当为多少度时,AP平分.21.(8分)如图,已知:AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.(证明注明理由)22.(10分)九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设(分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为千米,骑自行车学生骑行的路程为千米,关于的函数图象如图所示.(1)求关于的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?23.(10分)如图1.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,1),C(5,1).(1)直接写出点B关于x轴对称的对称点B1的坐标为,直接写出点B关于y轴对称的对称点B2的坐标为,直接写出△AB1B2的面积为;(2)在y轴上找一点P使PA+PB1最小,则点P坐标为;(3)图2是10×10的正方形网格,顶点在这些小正方形顶点的三角形为格点三角形,①在图2中,画一个格点三角形△DEF,使DE=10,EF=5,DF=3;②请直接写出在图2中满足①中条件的格点三角形的个数.24.(10分)(1)分解因式:;(2)化简求值:,其中.25.(12分)射击训练班中的甲、乙两名选手在5次射击训练中的成绩依次为(单位:环):甲:8,8,7,8,9乙:5,9,7,10,9教练根据他们的成绩绘制了如下尚不完整的统计图表:选手平均数众数中位数方差甲8b80.4乙α9c3.2根据以上信息,请解答下面的问题:(1)α=,b=,c=;(2)完成图中表示乙成绩变化情况的折线;(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是什么?(4)若选手乙再射击第6次,命中的成绩是8环,则选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会.(填“变大”、“变小”或“不变”)26.定义:在平面直角坐标系中,对于任意两点,,若点满足,那么称点是点,的融合点.例如:,,当点满足,时,则点是点,的融合点.(1)已知点,,,请说明其中一个点是另外两个点的融合点.(2)如图,点,点是直线上任意一点,点是点,的融合点.①试确定与的关系式;②在给定的坐标系中,画出①中的函数图象;③若直线交轴于点.当为直角三角形时,直接写出点的坐标.
参考答案一、选择题(每题4分,共48分)1、C【解题分析】试题分析:根据全等三角形的判定定理,即可得出:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;添加∠A=∠D,根据ASA,可证明△ABC≌△DEF,故B都正确;添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C都不正确.故选C.考点:全等三角形的判定.2、A【分析】根据CE垂直平分AD,得AC=CD,再根据等腰在三角形的三线合一,得,结合角平分线定义和,得,则.【题目详解】∵CE垂直平分AD∴AC=CD=6cm,∵CD平分∴∴∴∴∴故选:A【题目点拨】本题考查的知识点主要是等腰三角形的性质的“三线合一”性质定理及判定“等角对等边”,熟记并能熟练运用这些定理是解题的关键.3、A【解题分析】根据轴对称图形的概念对各个选项进行判断即可.【题目详解】解:A中的图案是轴对称图形,B、C、D中的图案不是轴对称图形,
故选:A.【题目点拨】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,也可以说这个图形关于这条直线(成轴)对称.4、A【解题分析】利用作差法进行解答即可.【题目详解】∵A-B=x-2x-3-(x-1)(x-4)=x2-5x+6-(x2-5x+4)=x2-5x+6-x2+5x-4=2∴A>B.故选A.【题目点拨】本题考查了整式的混合运算,熟练运用作差法比较大小是解决问题的关键.5、D【分析】根据众数和中位数的定义即可得到结果.【题目详解】解:∵25是这组数据中出现次数最多的数据,∴25是这组数据的众数;∵已知数据是由小到大的顺序排列,第25个和第26个数都是1,∴这组数据的中位数为1.故选D.【题目点拨】本题考查的是众数和中位数,熟练掌握基本概念是解题的关键.6、D【分析】作DH⊥AC于H,如图,先根据勾股定理计算出AC=10,再利用角平分线的性质得到DB=DH,进行利用面积法得到×AB×CD=DH×AC,则可求出DH,然后根据三角形面积公式计算S△ADC.【题目详解】解:作DH⊥AC于H,如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,∴,∵AD为∠BAC的角平分线,∴DB=DH,∵×AB×CD=DH×AC,∴6(8﹣DH)=10DH,解得DH=3,∴S△ADC=×10×3=1.故选:D.【题目点拨】本题结合三角形的面积考查角平分线的性质定理,熟练掌握该性质,作出合理辅助线是解答关键.7、C【分析】根据平行线的公理及判定、角的定义和补角和余角的定义可逐一判断.【题目详解】解:A、过直线外一点有且只有一条直线与已知直线平行,是假命题;B、两个锐角的和不一定是钝角,如20°+20°=40°,是假命题;C、一个锐角的补角比它的余角大90°,是真命题;D、同旁内角互补,两直线平行,是假命题;故选:C.【题目点拨】本题主要考查平行线的公理及性质,掌握平行线的公理及判定、角的定义和补角和余角的定义是关键.8、A【分析】把分子与分母能因式分解的先进行因式分解,然后再约分即可得到答案.【题目详解】.故选:A.【题目点拨】此题主要考查了分的乘法运算,正确掌握分式的基本性质是解题的关键.9、C【分析】由余角性质可知∠BCD=∠A,根据BD=1可以得到CD的长度,进一步得到AD的长度.【题目详解】由题意,∠BCD和∠A都与∠B互余,∴∠BCD=∠A=∴BC=2BD=2,CD=BD=,AC=2CD=2,AD=CD=×=1.故选C.【题目点拨】本题考查直角三角形的性质,熟练掌握角的对边、邻边与斜边的关系是解题关键.10、C【解题分析】分析:利用合并同类项的法则,同底数幂的乘法以及完全平方公式的知识求解即可求得答案.解答:解:A、3a-2a=a,故本选项错误;B、a2·a3=a5,故本选项错误;C、(a-b)2=a2-2ab+b2,故本选项正确;D、(a+b)2=a2+2ab+b2,故本选项错误.故选C.【题目详解】请在此输入详解!11、B【分析】求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【题目详解】解:将长方体展开,连接A、B,根据两点之间线段最短,BD=1+2=3,AD=4,由勾股定理得:AB===1.故选B.【题目点拨】考查了轴对称−最短路线问题,将长方体展开,根据两点之间线段最短,运用勾股定理解答是关键.12、B【分析】根据无理数的概念逐一进行判定即可.【题目详解】都是有理数,是无理数所以无理数有2个故选:B.【题目点拨】本题主要考查无理数,能够区别有理数与无理数是解题的关键.二、填空题(每题4分,共24分)13、1【分析】根据分式的值为零的条件得到x-1=0且x≠0,易得x=1.【题目详解】∵分式的值为0,∴x−1=0且x≠0,∴x=1.故答案为1.【题目点拨】本题考查了分式的值为零的条件,解题的关键是熟练的掌握分式的值为零的条件.14、【解题分析】过E作EG∥AB,交AC于G,易得AG=EG,EF=CF,依据△ABC∽△GEF,即可得到EG:EF:GF=3:4:5,故设EG=3k=AG,则EF=4k=CF,FG=5k,根据AC=10,可得3k+5k+4k=10,即k=,进而得出EF=4k=.【题目详解】过E作EG∥AB,交AC于G,则∠BAE=∠AEG,
∵AE平分∠BAC,
∴∠BAE=∠CAE,
∴∠CAE=∠AEG,
∴AG=EG,
同理可得,EF=CF,
∵AB∥GE,BC∥EF,
∴∠BAC=∠EGF,∠BCA=∠EFG,
∴△ABC∽△GEF,
∵∠ABC=90°,AB=6,BC=8,
∴AC=10,
∴EG:EF:GF=AB:BC:AC=3:4:5,
设EG=3k=AG,则EF=4k=CF,FG=5k,
∵AC=10,
∴3k+5k+4k=10,
∴k=,
∴EF=4k=.故答案是:.【题目点拨】考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.15、6。【解题分析】根据实数的性质即可求解.【题目详解】∵36∴故答案为6【题目点拨】此题主要考查实数的估算,解题的关键是熟知实数的性质.16、60【分析】根据题意可以判断为等腰三角形,利用勾股定理求出AB边的高,即可得到答案.【题目详解】如图作出AB边上的高CD∵AC=BC=13,AB=10,∴△ABC是等腰三角形,∴AD=BD=5,根据勾股定理CD2=AC2-AD2,CD==12,==60,故答案为:60.【题目点拨】此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.17、1【分析】先观察式子,将2020×2018变为(2019+1)×(2019-1),然后利用平方差公式计算即可.【题目详解】原式=20192﹣(2019+1)×(2019-1)=20192-(20192-1)=20192-20192+1=1故答案为:1.【题目点拨】本题考查了用平方差公式进行简便计算,熟悉公式特点是解题关键.18、2【分析】由题意可列出关于a,b的一元二次方程组,然后求解得到a,b的值,再代入式子求解即可.【题目详解】依题意可得方程组解得则a2+b2=12+(﹣1)2=2.故答案为2.【题目点拨】本题主要考查解一元二次方程组,解一元二次方程组的一般方法为代入消元法和加减消元法.三、解答题(共78分)19、(1)BE=8﹣2;(2)证明见解析;(3)+5+3.【分析】(1)先求出DE=AD=4,最后用勾股定理即可得出结论;(2)先判断出∠BMD=90°,再判断出△ADM≌△BCM得出∠AMD=∠BMC,即可得出结论;(3)由于BM和PQ是定值,只要BP+QM最小,利用对称确定出MG'就是BP+QM的最小值,最后利用勾股定理即可得出结论.【题目详解】解:(1)如图1中,∵四边形ABCD是矩形,∴∠C=90°,CD=AB=6,AD=BC=8,∴DE=AD=8,在Rt△CDE中,CE=,∴BE=BC﹣CE=8﹣2;(2)如图2,连接BM,∵点M是DE的中点,∴DM=EM,∵BD=BE,∴BM⊥DE,∴∠BMD=90°,∵点M是Rt△CDE的斜边的中点,∴DM=CM,∴∠CDM=∠DCM,∴∠ADM=∠BCM在△ADM和△BCM中,,∴△ADM≌△BCM(SAS),∴∠AMD=∠BMC,∴∠AMC=∠AMB+∠BMC=∠AMB+∠AMD=∠BMD=90°,∴AM⊥CM;(3)如图3中,过点Q作QG∥BP交BC于G,作点G关于AD的对称点G',连接QG',当点G',Q,M在同一条线上时,QM+BP最小,而PQ和BM是定值,∴此时,四边形PBMQ周长最小,∵QG∥PB,PQ∥BG,∴四边形BPQG是平行四边形,∴QG=BP,BG=PQ=5,∴CG=3,如图2,在Rt△BCD中,CD=6,BC=8,∴BD=10,∴BE=10,∴BG=BE﹣BG=5,CE=BE﹣BC=2,∴HM=1+3=4,HG=CD=3,在Rt△MHG'中,HG'=6+3=9,HM=4,∴MG'=,在Rt△CDE中,DE=,∴ME=,在Rt△BME中,BM==3,∴四边形PBMQ周长最小值为BP+PQ+MQ+BM=QG+PQ+QM+BM=MG'+PQ+PM=+5+3,【题目点拨】本题是一道四边形综合题,主要考查了矩形的性质、勾股定理、全等三角形的判定和性质、等腰三角形的性质,确定BP+QM的最小值是解答本题的关键.20、(1)详见解析;(2)30°.【分析】(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;(2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得∠B的度数,可得答案.【题目详解】(1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,∵EF为AB的垂直平分线,∴PA=PB,∴点P即为所求.(2)如图,连接AP,∵,∴,∵AP是角平分线,∴,∴,∵,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当时,AP平分.【题目点拨】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.21、见解析【分析】要证明EF平分∠BED,即证∠4=∠5,由平行线的性质,∠4=∠3=∠1,∠5=∠2,只需证明∠1=∠2,而这是已知条件,故问题得证.【题目详解】解:证明:∵AC∥DE,
∴∠BCA=∠BED,
即∠1+∠2=∠4+∠5,
∵AC∥DE,
∴∠1=∠3;
∵DC∥EF,
∴∠3=∠4;
∴∠1=∠4,
∴∠2=∠5;
∵CD平分∠BCA,
∴∠1=∠2,
∴∠4=∠5,
∴EF平分∠BED.【题目点拨】本题考查了角平分线的定义及平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.22、;(2)骑自行车的学生先到达百花公园,先到了10分钟.【分析】(1)根据函数图象中的数据可以求得关于的函数解析式;(2)根据函数图象中的数据和题意可以分别求得步行学生和骑自行车学生到达百花公园的时间,从而可以解答本题.【题目详解】解:(1)设关于的函数解析式是,,得,即关于的函数解析式是;(2)由图象可知,步行的学生的速度为:千米/分钟,步行同学到达百花公园的时间为:(分钟),当时,,得,,答:骑自行车的学生先到达百花公园,先到了10分钟.【题目点拨】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23、(1)(2,﹣1),(﹣2,1),7;(2)(0,);(3)①见解析;②8【分析】(1)根据关于x轴、y轴对称的点的坐标特征即可得到结论;(2)根据轴对称的性质得到B3(﹣2,﹣1),求得直线AB3的解析式,求出直线AB3与y轴的交点即可得到结论;(3)①借助勾股定理确定三边长,发现最长的边为10×10的正方形网格的对角线,然后以对角线的两个顶点为圆心,分别以为半径画圆,交点即为所求的F点,以此画出图形即可;②在10×10的正方形网格中找出所以满足条件的三角形即可确定答案.【题目详解】解:(1)∵B(2,1),∴点B关于x轴对称的对称点B1的坐标为(2,﹣1),点B关于y轴对称的对称点B2的坐标为(﹣2,1),△AB1B2的面积=4×4﹣×2×3﹣×1×4﹣×2×4=7,(2)作点B1关于y轴的对称点B3,连接AB3交y轴于P,则此时PA+PB1最小,∵B1的坐标为(2,﹣1),∴B3(﹣2,﹣1),设直线的函数关系式为,将点代入解析式得解得∴;当时,∴点P坐标为(0,);(3)①如图2所示,△DEF即为所求;②如图2所示,满足①中条件的格点三角形的个数为8个.【题目点拨】本题主要考查轴对称变换,待定系数法和画三角形,掌握关于x,y轴对称的点的特点,待定系数法是解题的关键.24、(1);(2),【分析】(1)先提公因式,再运用完全平方公式进行第二次分解即可;(2)通分并利用同分母分式的加法法则计算,化成最简式后再代入求值即可.【题目详解】(1);(2)当时,原式.【题目点拨】本题考查了因式分解和分式的化简求值,熟知混合运算的法则是解答此题的关键.25、(1):8,8,9;(2)见解析;(3)两人的平均成绩相同,而甲的成绩的方差小,即甲的成绩较稳定;(4)变小.【解题分析】(1)依据平均数、众数以及中位数的概念进行计算判断即可;
(2)依据乙的成绩:5,9,7,10,9,即可完成图中表示乙成绩变化情况的折线;
(3)两人的平均成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- vip战略合同样本
- 农作物种子订购合同标准文本
- 金融自助设备行业直播电商战略研究报告
- 石膏矾土膨胀水泥企业制定与实施新质生产力战略研究报告
- 会计文秘劳务合同标准文本
- 饲料粉碎机(饲料专用设备)行业跨境出海战略研究报告
- 轮胎式柴油锤打桩架行业直播电商战略研究报告
- 乐山公司保安合同标准文本
- 辐条钢丝行业直播电商战略研究报告
- 贵金属表带企业制定与实施新质生产力战略研究报告
- 《铰链四杆机构》(课件)
- 住宅物业消防安全管理 XF1283-2015知识培训
- 军事理论课件教学
- 《电网生产技改大修项目全过程管理典型案例》笔记
- 七年级下册数学课件:平行线中的拐点问题
- 幼儿绘本赏析课件:如果你不想去幼儿园
- CJT 206-2005 城市供水水质标准
- 氧气吸入操作评分标准(中心供氧)
- 入股到别人私人名下协议书
- 2024年咸阳市县及县以下医疗机构定向招考重点基础提升难、易点模拟试题(共500题)附带答案详解
- UG NX12.0基础与应用教程 课件全套 单元1-8 UG NX 12.0 软件的基础知识 - 工程图操作基础
评论
0/150
提交评论