吉林省农安县三宝中学2024届八年级数学第一学期期末调研试题含解析_第1页
吉林省农安县三宝中学2024届八年级数学第一学期期末调研试题含解析_第2页
吉林省农安县三宝中学2024届八年级数学第一学期期末调研试题含解析_第3页
吉林省农安县三宝中学2024届八年级数学第一学期期末调研试题含解析_第4页
吉林省农安县三宝中学2024届八年级数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省农安县三宝中学2024届八年级数学第一学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在直角△ABC中,,AB=AC,点D为BC中点,直角绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是()A.①②④ B.②③④ C.①②③ D.①②③④2.分式方程的解是()A.x=1 B.x=2 C.x=0 D.无解.3.下列运算结果为的是A. B. C. D.4.如图是一张直角三角形的纸片,两直角边,现将折叠,使点与点重合,折痕为,则的长为()A. B. C. D.5.若a+b=5,则代数式(﹣a)÷()的值为()A.5 B.﹣5 C.﹣ D.6.一个三角形的三边长度的比例关系是,则这个三角形是()A.顶点是30°的等腰三角形 B.等边三角形C.有一个锐角为45°的直角三角形 D.有一个锐角为30°的直角三角形7.已知△ABC和△A′B′C′,下列条件中,不能保证△ABC和△A′B′C′全等的是()A.AB=A′B′,AC=A′C′,BC=B′C′ B.∠A=∠A′,∠B=∠B′,AC=A′C′C.AB=A′B′,AC=A′C′,∠A=∠A′ D.AB=A′B′,BC=B′C′,∠C=∠C′8.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB边上,AD=AC,AE⊥CD,垂足为F,与BC交于点E,则BE的长是()

A.1.5 B.2.5 C. D.39.下列计算,正确的是()A. B.a3÷a=a3 C.a2+a2=a4 D.(a2)2=a410.如图,在中,点是边上一点,,过点作交于,若是等腰三角形,则下列判断中正确的是()A. B. C. D.11.在直角坐标系中,函数与的图像大数是()A. B.C. D.12.等腰三角形的一个角是80°,则它的底角是()A.50° B.80° C.50°或80° D.20°或80°二、填空题(每题4分,共24分)13.在中,,,则面积为_______.14.已知5+7的小数部分为a,5﹣7的小数部分为b,则a+b=_____.15.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“”方向排列,如,,,,,根据这个规律,第个点的坐标为______.16.如图,在平面直角坐标系中,已知点A(2,-2),在坐标轴上确定一点B,使得△AOB是等腰三角形,则符合条件的点B共有________个.17.求的值,可令,则,因此.仿照以上推理,计算出的值为______.18.如图,在中,,,,点在上,将沿折叠,点落在点处,与相交于点,若,则的长是__________.三、解答题(共78分)19.(8分)对x,y定义一种新运算T,规定T(x,y)=(其中a,b是非零常数,且x+y≠0),这里等式右边是通常的四则运算.如:T(3,1)=,T(m,﹣2)=.(1)填空:T(4,﹣1)=(用含a,b的代数式表示);(2)若T(﹣2,0)=﹣2且T(5,﹣1)=1.①求a与b的值;②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.20.(8分)为了了解居民的环保意识,社区工作人员在某小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖答卷活动(每名居民必须答卷且只答一份),并用得到的数据绘制了如图所示的条形统计图(得分为整数,满分为分,最低分为分)请根据图中信息,解答下列问题:(1)本次调查,一共抽取了多少名居民?(2)求本次调查获取的样本数据的平均数和众数;(3)社区决定对该小区名居民开展这项有奖答卷活动,得分者获一等奖,请你根据调查结果,帮社区工作人员估计需要准备多少份一等奖奖品?21.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;并写出B点坐标;(2)请作出△ABC关于y轴对称的△A'B'C';(3)请作出将△ABC向下平移的3个单位,再向右平移5个单位后的△A1B1C1;则点A1的坐标为_____;点B1的坐标为______,22.(10分)(1)已知3x=2y=5z≠0,求的值;(2)某市政工程计划将安装的路灯交给甲、乙两家灯饰厂完成,已知甲厂生产100个路灯与乙厂生产150个路灯所用时间相同,且甲厂比乙厂每天少生产10个路灯,问甲、乙两家工厂每天各生产路灯多少个?23.(10分)计算:(1);(2)24.(10分)我县电力部门实行两种电费计价方法,方法一是使用峰谷电:每天8:00至22:00用电每千瓦时收费0.56元(峰电价);22:00到次日8:00,每千瓦时收费0.28元(谷电价),方法二是不使用峰谷电:每千瓦时均收费0.53元(1)如果小林家使用峰谷电后,上月付费95.2元,比不使用峰谷电少付费10.8元,则上月使用峰电和谷电各是多少千瓦时?(2)如果小林家上月总用电量140千瓦时,那么当峰电用量为多少时,使用峰谷电比较合算.25.(12分)在数学活动课上,李老师让同学们试着用角尺平分(如图所示),有两组.同学设计了如下方案:方案①:将角尺的直角顶点介于射线之间,移动角尺使角尺两边相同的刻度位于上,且交点分别为,即,过角尺顶点的射线就是的平分线.方案②:在边上分别截取,将角尺的直角顶点介于射线之间,移动角尺使角尺两边相同的刻度与点重合,即,过角尺顶点的射线就是的平分线.请分别说明方案①与方案②是否可行?若可行,请证明;若不可行,请说明理由.26.若△ABC的三边a、b、c满足|a—15|+(b—8)2+=1.试判断△ABC的形状,并说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据等腰直角三角形的性质可得∠CAD=∠B=45°,根据同角的余角相等求出∠ADF=∠BDE,然后利用“角边角”证明△BDE和△ADF全等,判断出③正确;根据全等三角形对应边相等可得DE=DF、BE=AF,从而得到△DEF是等腰直角三角形,判断出①正确;再求出AE=CF,判断出②正确;根据BE+CF=AF+AE,利用三角形的任意两边之和大于第三边可得BE+CF>EF,判断出④错误.【题目详解】∵∠B=45°,AB=AC,

∴△ABC是等腰直角三角形,

∵点D为BC中点,

∴AD=CD=BD,AD⊥BC,∠CAD=45°,

∴∠CAD=∠B,

∵∠MDN是直角,

∴∠ADF+∠ADE=90°,

∵∠BDE+∠ADE=∠ADB=90°,

∴∠ADF=∠BDE,

在△BDE和△ADF中,,

∴△BDE≌△ADF(ASA),故③正确;

∴DE=DF、BE=AF,

又∵∠MDN是直角,

∴△DEF是等腰直角三角形,故①正确;

∵AE=AB-BE,CF=AC-AF,

∴AE=CF,故②正确;

∵BE+CF=AF+AE>EF,

∴BE+CF>EF,

故④错误;

综上所述,正确的结论有①②③;

故选:C.【题目点拨】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、同角的余角相等的性质、三角形三边的关系;熟练掌握等腰直角三角形的性质,并能进行推理论证是解决问题的关键.2、C【解题分析】分析:首先进行去分母将分式方程转化为整式方程,然后解一元一次方程,最后对方程的根进行检验.详解:去分母可得:x-2=2(x-1),解得:x=0,经检验:x=0是原方程的解,∴分式方程的解为x=0,故选C.点睛:本题主要考查的是解分式方程的方法,属于基础题型.去分母是解分式方程的关键所在,还要注意分式方程最后必须进行验根.3、D【分析】根据整式运算法则逐个分析即可.【题目详解】A.,B.,C.=,D.=.故选D【题目点拨】本题考核知识点:整式基本运算.解题关键点:掌握实数运算法则.4、B【分析】首先设AD=xcm,由折叠的性质得:BD=AD=xcm,又由BC=8cm,可得CD=8-x(cm),然后在Rt△ACD中,利用勾股定理即可求得方程,解方程即可求得答案.【题目详解】设AD=xcm,由折叠的性质得:BD=AD=xcm,∵在Rt△ABC中,AC=6cm,BC=8cm,∴CD=BC-BD=(8-x)cm,在Rt△ACD中,AC2+CD2=AD2,即:62+(8-x)2=x2,解得:x=,∴AD=cm.故选:B.【题目点拨】此题考查了折叠的性质与勾股定理的知识.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意掌握折叠前后图形的对应关系.5、B【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.【题目详解】∵a+b=5,∴原式故选:B.【题目点拨】考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用.6、D【分析】根据题意设三边的长度,再根据边的关系即可得出答案.【题目详解】一个三角形的三边长度的比例关系是,设这个三角形三边的长度分别为、、,,且,这个三角形是直角三角形,且斜边长为,斜边长是其中一条直角边长的2倍,即这个三角形是有一个锐角为30°的直角三角形,故选:D.【题目点拨】本题考查了含30度角的直角三角形性质、勾股定理的逆定理,能够得出三角形为直角三角形是解题的关键.7、D【解题分析】根据全等三角形的判定方法对各项逐一判断即得答案.【题目详解】解:A、AB=A′B′,AC=A′C′,BC=B′C′,根据SSS可判定△ABC和△A′B′C′全等,本选项不符合题意;B、∠A=∠A′,∠B=∠B′,AC=A′C′,根据AAS可判定△ABC和△A′B′C′全等,本选项不符合题意;C、AB=A′B′,AC=A′C′,∠A=∠A′,根据SAS可判定△ABC和△A′B′C′全等,本选项不符合题意;D、AB=A′B′,BC=B′C′,∠C=∠C′,这是SSA,不能判定△ABC和△A′B′C′全等,本选项符合题意.故选:D.【题目点拨】本题考查了全等三角形的判定,属于应知应会题型,熟练掌握全等三角形的判定方法是解题关键.8、B【分析】连接DE,由勾股定理求出AB=5,由等腰三角形的性质得出CF=DF,由线段垂直平分线的性质得出CE=DE,由SSS证明△ADE≌△ACE,得出∠ADE=∠ACE=∠BDE=90°,设CE=DE=x,则BE=4-x,在Rt△BDE中,由勾股定理得出方程,解方程即可.【题目详解】解:连接DE,如图所示,

∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,

∴AB==5,

∵AD=AC=3,AF⊥CD,

∴DF=CF,

∴CE=DE,BD=AB-AD=2,

在△ADE和△ACE中,,

∴△ADE≌△ACE(SSS),

∴∠ADE=∠ACE=90°,

∴∠BDE=90°,

设CE=DE=x,则BE=4-x,

在Rt△BDE中,由勾股定理得:DE2+BD2=BE2,

即x2+22=(4-x)2,

解得:x=1.5;

∴CE=1.5;

∴BE=4-1.5=2.5

故选:B.【题目点拨】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质、线段垂直平分线的性质;熟练掌握勾股定理,证明三角形全等是解题的关键.9、D【分析】运用同底数幂的乘法、同底数幂除法、合并同类项以及幂的乘方进行运算即可判断.【题目详解】A、错误,该选项不符合题意;B、错误,该选项不符合题意;C、错误,该选项不符合题意;D、正确,该选项符合题意;故选:D.【题目点拨】本题考查了同底数幂的乘法、同底数幂除法、合并同类项以及幂的乘方的运算法则,掌握相关运算法则是解答本题的关键.10、B【解题分析】根据等腰三角形的性质得到根据垂直的性质得到根据等量代换得到又即可得到根据同角的余角相等即可得到.【题目详解】,,从而是等腰三角形,,故选:B.【题目点拨】考查等腰三角形的性质,垂直的性质,三角形的内角和定理,掌握同角的余角相等是解题的关键.11、B【分析】根据四个选项图像可以判断过原点且k<0,,-k>0即可判断.【题目详解】解:A.与图像增减相反,得到k<0,所以与y轴交点大于0故错误;B.与图像增减相反,得到k<0,所以与y轴交点大于0故正确;C.与图像增减相反,为递增一次函数且不过原点,故错误;D.过原点,而图中两条直线都不过原点,故错误.故选B【题目点拨】此题主要考查了一次函数图像的性质,熟记k>0,y随x的增大而增大;k<0,y随x的增大而减小;常数项为0,函数过原点.12、C【分析】因为题中没有指明该角是顶角还是底角,则应该分两种情况进行分析.【题目详解】解:①当顶角是80°时,它的底角=(180°﹣80°)=50°;②底角是80°.所以底角是50°或80°.故选:C.【题目点拨】本题考查了等腰三角形底角的问题,掌握等腰三角形的性质是解题的关键.二、填空题(每题4分,共24分)13、60【分析】根据题意可以判断为等腰三角形,利用勾股定理求出AB边的高,即可得到答案.【题目详解】如图作出AB边上的高CD∵AC=BC=13,AB=10,∴△ABC是等腰三角形,∴AD=BD=5,根据勾股定理CD2=AC2-AD2,CD==12,==60,故答案为:60.【题目点拨】此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.14、2【解题分析】先估算出5+7的整数部分,然后可求得a的值,然后再估算出5-7的整数部分,然后可求得b的值,最后代入计算即可.【题目详解】解:∵4<7<9,

∴2<7<2.

∴a=5+7-7=7-2,b=5-7-2=2-7.

∴a+b=7-2+2-7=2.故答案为:2.【题目点拨】本题主要考查的是估算无理数的大小,求得a,b的值是解题的关键.15、【分析】根据题意,得到点的总个数等于轴上右下角的点的横坐标的平方,由于,所以第2020个点在第45个矩形右下角顶点,向上5个单位处.【题目详解】根据图形,以最外边的矩形边长上的点为准,点的总个数等于轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为,共有个,右下角的点的横坐标为时,共有个,,右下角的点的横坐标为时,共有个,,右下角的点的横坐标为时,共有个,,右下角的点的横坐标为时,共有个,,是奇数,第个点是,第个点是,故答案为:.【题目点拨】本题考查了规律的归纳总结,重点是先归纳总结规律,然后在根据规律求点位的规律.16、1【分析】OA是等腰三角形的一边,确定第三点B,可以分OA是腰和底边两种情况进行讨论即可.【题目详解】(1)若AO作为腰时,有两种情况,当A是顶角顶点时,B是以A为圆心,以OA为半径的圆与坐标轴的交点,共有2个(除O点);当O是顶角顶点时,B是以O为圆心,以OA为半径的圆与坐标轴的交点,有4个;(2)若OA是底边时,B是OA的中垂线与坐标轴的交点,有2个.以上1个交点没有重合的.故符合条件的点有1个.故答案为:1.【题目点拨】本题考查了坐标与图形的性质和等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底,哪边是腰时,应在符合三角形三边关系的前提下分类讨论.17、【分析】根据题目所给计算方法,令,再两边同时乘以,求出,用,求出的值,进而求出的值.【题目详解】解:令,则,∴,∴,则.故答案为:【题目点拨】本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键.18、【分析】利用平行线的性质及折叠的性质得到,即AB⊥CE,再根据勾股定理求出,再利用面积法求出CE.【题目详解】∵,∴,由折叠得:,∵,∴,∴,∴AB⊥CE,∵,,,∴,∵,∴,∴CE=,∴,∵,∴,∴,故答案为:.【题目点拨】此题考查平行线的性质,折叠的性质,勾股定理,利用面积法求三角形的高线,题中求出AB⊥CE是解题的关键.三、解答题(共78分)19、(1);(2)①a=1,b=-1,②m=2.【分析】(1)根据题目中的新运算法则计算即可;(2)①根据题意列出方程组即可求出a,b的值;②先分别算出T(3m﹣3,m)与T(m,3m﹣3)的值,再根据求出的值列出等式即可得出结论.【题目详解】解:(1)T(4,﹣1)==;故答案为;(2)①∵T(﹣2,0)=﹣2且T(2,﹣1)=1,∴解得②解法一:∵a=1,b=﹣1,且x+y≠0,∴T(x,y)===x﹣y.∴T(3m﹣3,m)=3m﹣3﹣m=2m﹣3,T(m,3m﹣3)=m﹣3m+3=﹣2m+3.∵T(3m﹣3,m)=T(m,3m﹣3),∴2m﹣3=﹣2m+3,解得,m=2.解法二:由解法①可得T(x,y)=x﹣y,当T(x,y)=T(y,x)时,x﹣y=y﹣x,∴x=y.∵T(3m﹣3,m)=T(m,3m﹣3),∴3m﹣3=m,∴m=2.【题目点拨】本题关键是能够把新运算转化为我们学过的知识,并应用一元一次方程或二元一次方程进行解题..20、(1)50;(2)8.26分,8分;(3)100【分析】(1)根据总数=个体数量之和计算即可;(2)根据样本的平均数和众数的定义计算即可;(3)利用样本估计总体的思想解决问题即可;【题目详解】(1)(名),答:本次调查一共抽取了名居民;(2)平均数(分);众数:从统计图可以看出,得分的人最多,故众数为(分);(3)(份),答:估计大约需要准备份一等奖奖品.【题目点拨】本题考查了条形统计图综合运用,平均数与众数等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.注意:条形统计图能清楚地表示出每个项目的数据.21、(1)坐标系见解析;B(-2,1)(2)画图见解析;(3)画图见解析;(1,2),(4,0);【分析】(1)根据坐标性质即可画出平面直角坐标系,根据图形可知B点坐标(2)根据y轴对称即可画出(3)根据平移的性质,即可画图,直接写出坐标.【题目详解】解:(1)平面直角坐标系如图所示:依据图形,可知B点坐标为(-2,1)(2)△A'B'C'如图所示;(3)△A1B1C1如图所示.则点A1的坐标为(1,2);点B1的坐标为(4,0),故答案为(1,2),(4,0);【题目点拨】本题考查了图形的平移和对称,平面直角坐标系的简单应用,属于简单题,熟悉概念是解题关键.22、(1)58;(2)甲工厂每天生产20个路灯,乙工厂每天生产30个路灯.【分析】(1)设3x=2y=5z=30a(a≠0),用含a的代数式表示x,y,z,进而即可求解;(2)设甲工厂每天生产x个路灯,则乙工厂每天生产(x+10)个路灯,根据“甲厂生产100个路灯与乙厂生产150个路灯所用时间相同”,列出分式方程,即可求解.【题目详解】(1)∵3x=2y=5z≠0,∴设3x=2y=5z=30a(a≠0),∴x=10a,y=15a,z=6a,∴;(2)设甲工厂每天生产x个路灯,则乙工厂每天生产(x+10)个路灯,依题意,得:,解得:x=20,经检验,x=20是分式方程的解,且符合题意,x+10=30,答:甲工厂每天生产20个路灯,乙工厂每天生产30个路灯.【题目点拨】本题主要考查分式的求值以及分式方程的实际应用,解题的关键是:(1)用同一个字母表示出x,y,z;(2)根据等量关系,列出分式方程.23、(1)1;(2)【分析】(1)根据整数指数幂的运算法则先化简各项,同时化简绝对值,再加减可得解;(2)先化简各二次根式,再进行计算.【题目详解】(1)原式(2)原式【题目点拨】本题考查了二次根式的混合运算,也考查了负指数幂和0次幂,熟

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论