江苏省连云港外国语学校2024届八年级数学第一学期期末考试模拟试题含解析_第1页
江苏省连云港外国语学校2024届八年级数学第一学期期末考试模拟试题含解析_第2页
江苏省连云港外国语学校2024届八年级数学第一学期期末考试模拟试题含解析_第3页
江苏省连云港外国语学校2024届八年级数学第一学期期末考试模拟试题含解析_第4页
江苏省连云港外国语学校2024届八年级数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省连云港外国语学校2024届八年级数学第一学期期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知△ABC中,AB=17cm,AC=10cm,边上的高AD=8cm,则边的长为()A. B.或 C. D.或2.计算结果为x2﹣y2的是()A.(﹣x+y)(﹣x﹣y) B.(﹣x+y)(x+y)C.(x+y)(﹣x﹣y) D.(x﹣y)(﹣x﹣y)3.如图,在中,,边的垂直平分线交于点.已知的周长为14,,则的值为()A.14 B.6 C.8 D.204.如图,∠AOB=10°,点P是∠AOB内的定点,且OP=1.若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.12 B.9 C.6 D.15.下列分解因式正确的是()A. B.C. D.6.程老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题,操作学具时,点Q在轨道槽AM上运动,点P既能在以A为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动,图2是操作学具时,所对应某个位置的图形的示意图.有以下结论:①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ其中所有正确结论的序号是()A.②③ B.③④ C.②③④ D.①②③④7.无论x取什么数,总有意义的分式是A. B. C. D.8.为了筹备班级元旦联欢晚会,班长打算先对全班同学爱吃什么水果进行民意调查,再决定买哪种水果.下面的调查数据中,他最应该关注的是()A.众数 B.中位数 C.平均数 D.加权平均数9.等腰△ABC中,∠C=50°,则∠A的度数不可能是()A.80° B.50° C.65° D.45°10.已知:将直线沿着轴向下平移2个单位长度后得到直线,则下列关于直线的说法正确的是()A.经过第一、二、四象限 B.与轴交于C.与轴交于 D.随的增大而减小二、填空题(每小题3分,共24分)11.命题“如果两个角都是直角,那么这两个角相等”的逆命题是_____.12.已知x+y=8,xy=12,则的值为_______.13.已知是完全平方式,则_________.14.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边长分别为6m和8m,斜边长为10m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是_____.15.如图,A.B两点在正方形网格的格点上,每个方格都是边长为1的正方形、点C也在格点上,且△ABC为等腰三角形,则符合条件的点C共有______个.16.若关于、的二元一次方程组,则的算术平方根为_________.17.一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.18.使式子有意义的x的取值范围是_______三、解答题(共66分)19.(10分)数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点为的中点时,如图1,确定线段与的大小关系,请你直接写出结论:(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,与的大小关系是:(填“>”,“<”或“=”).理由如下:如图2,过点作,交于点.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形中,点在直线上,点在直线上,且.若的边长为1,,求的长(请你直接写出结果).20.(6分)请你观察下列等式,再回答问题.;(1)根据上面三个等式提供的信息,请猜想的结果,并进行验证;(2)请按照上面各等式反映的规律,试写出用n(n为正整数)表示的等式,并加以验证.21.(6分)阅读下面的证明过程,在每步后的横线上填写该步推理的依据,如图,,,是的角平分线,求证:.证明:是的角平分线()又()()()()又()()()22.(8分)张明和李强两名运动爱好者周末相约到东湖绿道进行跑步锻炼.周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5千米和1.2千米的绿道落雁岛入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,(1)求张明和李强的速度分别是多少米/分?(2)两人到达绿道后约定先跑6千米再休息,李强的跑步速度是张明跑步速度的m倍,两人在同起点,同时出发,结果李强先到目的地n分钟.①当m=12,n=5时,求李强跑了多少分钟?②张明的跑步速度为米/分(直接用含m,n的式子表示).23.(8分)(1)已知的立方根为,的算术平方根为,最大负整数是,则_________,__________,_________;(2)将(1)中求出的每个数表示在数轴上.(3)用“”将(1)中的每个数连接起来.24.(8分)如图,AC平分钝角∠BAE交过B点的直线于点C,BD平分∠ABC交AC于点D,且∠BAD+∠ABD=90°.(1)求证:AE∥BC;(2)点F是射线BC上一动点(点F不与点B,C重合),连接AF,与射线BD相交于点P.(ⅰ)如图1,若∠ABC=45°,AF⊥AB,试探究线段BF与CF之间满足的数量关系;(ⅱ)如图2,若AB=10,S△ABC=30,∠CAF=∠ABD,求线段BP的长.25.(10分)求证:有两个角和其中一个角的角平分线对应相等的两个三角形全等.26.(10分)已知△ABC中,AB=17,AC=10,BC边上得高AD=8,则边BC的长为________

参考答案一、选择题(每小题3分,共30分)1、B【分析】高线AD可能在三角形的内部也可能在三角形的外部,分两种情况进行讨论,分别依据勾股定理即可求解.【题目详解】解:分两种情况:①如图在Rt△ABD中,∠ADB=90°,由勾股定理得,AB2=AD2+BD2∴172=82+BD2,解得BD=15cm,在Rt△ACD中,∠ADC=90°,由勾股定理得,AC2=AD2+CD2∴102=82+CD2,解得CD=6cm,∴BC=BD+CD=15+6=21cm;②如图由勾股定理求得BD=15cm,CD=6cm,∴BC=BD-CD=15-6=9cm.∴BC的长为21cm或9cm.故选B【题目点拨】当涉及到有关高的题目时,高的位置可能在三角形的内部,也可能在三角形的外部,所以分类讨论计算是此类题目的特征.2、A【分析】根据平方差公式和完全平方公式逐一展开即可【题目详解】A.(﹣x+y)(﹣x﹣y)=(-x)2-y2=x2﹣y2,故A选项符合题意;B.(﹣x+y)(x+y),故B选项不符合题意;C.(x+y)(﹣x﹣y),故C选项不符合题意;D.(x﹣y)(﹣x﹣y)=,故D选项不符合题意;故选A.【题目点拨】此题考查的是平方差公式以及完全平方公式,掌握平方差公式以及完全平方公式的特征是解决此题的关键.3、C【分析】根据线段垂直平分线的性质,可知,然后根据的周长为,可得,再由可得,即.【题目详解】解:边垂直平分线又的周长=,即.故选C【题目点拨】此题主要考查了线段的垂直平分线的性质,解题时,先利用线段的垂直平分线求出,然后根据三角形的周长互相代换,即可其解.4、D【分析】根据题意,作点P关于OA、OB的对称点E、D,连接DE,与OA相交于点M,与OB相交于点N,则此时△PMN周长的最小值是线段DE的长度,连接OD、OE,由∠AOB=10°,得到∠DOE=60°,由垂直平分线的性质,得到OD=OE=OP=1,则△ODE是等边三角形,即可得到DE的长度.【题目详解】解:如图:作点P关于OA、OB的对称点E、D,连接DE,与OA相交于点M,与OB相交于点N,则此时△PMN周长的最小值是线段DE的长度,连接OD、OE,由垂直平分线的性质,得DN=PN,MP=ME,OD=OE=OP=1,∴△PMN周长的最小值是:PN+PM+MN=DN+MN+ME=DE,由垂直平分线的性质,得∠DON=∠PON,∠POM=∠EOM,∴∠DOE=∠DOP+∠EOP=2(∠PON+∠POM)=2∠MON=60°,∴△ODE是等边三角形,∴DE=OD=OE=1,∴△PMN周长的最小值是:PN+PM+MN=DE=1;故选:D.【题目点拨】本题考查了等边三角形的判定,垂直平分线的性质,轴对称的性质,以及最短路径问题,解题的关键是正确作出辅助线,确定点M、N的位置,使得△PMN周长的最小.5、C【分析】根据因式分解定义逐项分析即可;【题目详解】A.等式两边不成立,故错误;B.原式=,故错误;C.正确;D.原式=,故错误;故答案选C.【题目点拨】本题主要考查了因式分解的判断,准确应用公式是解题的关键.6、C【分析】分别在以上四种情况下以P为圆心,PQ的长度为半径画弧,观察弧与直线AM的交点即为Q点,作出后可得答案.【题目详解】如下图,当∠PAQ=30°,PQ=6时,以P为圆心,PQ的长度为半径画弧,弧与直线AM有两个交点,作出,发现两个位置的Q都符合题意,所以不唯一,所以①错误.如下图,当∠PAQ=30°,PQ=9时,以P为圆心,PQ的长度为半径画弧,弧与直线AM有两个交点,作出,发现左边位置的Q不符合题意,所以唯一,所以②正确.如下图,当∠PAQ=90°,PQ=10时,以P为圆心,PQ的长度为半径画弧,弧与直线AM有两个交点,作出,发现两个位置的Q都符合题意,但是此时两个三角形全等,所以形状相同,所以唯一,所以③正确.如下图,当∠PAQ=150°,PQ=12时,以P为圆心,PQ的长度为半径画弧,弧与直线AM有两个交点,作出,发现左边位置的Q不符合题意,所以唯一,所以④正确.综上:②③④正确.故选C.【题目点拨】本题考查的是三角形形状问题,为三角形全等来探索判定方法,也考查三角形的作图,利用对称关系作出另一个Q是关键.7、C【分析】按照分式有意义,分母不为零即可求解.【题目详解】A.,x3+1≠1,x≠﹣1;B.,(x+1)2≠1,x≠﹣1;C.,x2+1≠1,x为任意实数;D.,x2≠1,x≠1.故选C.【题目点拨】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.8、A【解题分析】众数、中位数、平均数从不同角度反映了一组数据的集中趋势,但该问题应当看最爱吃哪种水果的人最多,故应当用众数.【题目详解】此问题应当看最爱吃哪种水果的人最多,应当用众数.故选A.【题目点拨】本体考查了众数、中位数、平均数的意义,解题时要注意题目的实际意义.9、D【分析】分类讨论后,根据三角形内角和定理及等腰三角形的两个底角相等解答即可.【题目详解】当∠C为顶角时,则∠A=(180°﹣50°)=65°;当∠A为顶角时,则∠A=180°﹣2∠C=80°;当∠A、∠C为底角时,则∠C=∠A=50°;∴∠A的度数不可能是45°,故选:D.【题目点拨】本题考查了三角形内角和定理,等腰三角形的性质,掌握等腰三角形两底角相等的性质是解题的关键.10、C【分析】根据直线平移的规律得到平移前的直线解析式,再根据一次函数的性质依次判断选项即可得到答案.【题目详解】∵直线沿着轴向下平移2个单位长度后得到直线,∴原直线解析式为:+2=x+1,∴函数图象经过第一、二、三象限,故A错误,当y=0时,解得x=-1,图象与x轴交点坐标为(-1,0),故B错误;当x=0时,得y=1,图象与y轴交点坐标为(0,1),故C正确;∵k=1>0,∴y随x的增大而增大,故D错误,故选:C.【题目点拨】此题考查一次函数的性质,函数图象平移的规律,根据图象的平移规律得到函数的解析式是解题的关键.二、填空题(每小题3分,共24分)11、如果两个角相等,那么两个角都是直角【解题分析】试题分析:将一个命题的题设和结论互换即可得到原命题的逆命题,所以命题“如果两个角都是直角,那么这两个角相等”的逆命题是如果两个角相等,那么这两个角都是直角.考点:命题与逆命题.12、1【分析】原式利用完全平方公式变形后,将各自的值代入计算即可求出值.【题目详解】∵x+y=8,xy=12,∴=(x+y)2-3xy=64-36=1.故答案为1.【题目点拨】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.13、【分析】根据完全平方公式的形式,可得答案.【题目详解】解:∵x2+mx+9是完全平方式,

∴m=,

故答案为:.【题目点拨】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏掉.14、6m【分析】根据三角形的面积公式,RT△ABC的面积等于△AOB、△AOC、△BOC三个三角形面积的和列式求出点O到三边的距离,然后乘以3即可.【题目详解】设点O到三边的距离为h,

则,

解得h=2m,

∴O到三条支路的管道总长为:3×2=6m.

故答案为:6m.【题目点拨】本题考查了角平分线上的点到两边的距离相等的性质,以及勾股定理,三角形的面积的不同表示,根据三角形的面积列式求出点O到三边的距离是解题的关键.15、9【解题分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.解:①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.此题考查了等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.注意数形结合的解题思想.16、2【分析】首先利用消元法解二元一次方程组,然后即可得出的算术平方根.【题目详解】①+②,得代入①,得∴∴其算术平方根为2,故答案为2.【题目点拨】此题主要考查二元一次方程组以及算术平方根的求解,熟练掌握,即可解题.17、3,3,.【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【题目详解】平均数=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是,方差==,故答案为:3,3,.【题目点拨】此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键.18、【分析】根据分式有意义的条件可得,再解即可.【题目详解】解:由题意得:,解得:,故答案为:.【题目点拨】此题主要考查了分式有意义的条件,关键是掌握分式有意义,分母不为1.三、解答题(共66分)19、(1)=;(2)=,过程见解析;(1)CD的长是1或1.【解题分析】方法一:如图,等边三角形中,是等边三角形,又.方法二:在等边三角形中,而由是正三角形可得20、(1),验证见解析;(2),验证见解析.【解题分析】(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;

(2)根据(1)找的规律写出表示这个规律的式子.【题目详解】(1),验证略.(2).验证如下:【题目点拨】本题考查了算术平方根,解题的关键是掌握算是平方根的概念.21、见解析.【分析】根据内错角相等两直线平行,角平分线的定义,等量代换,同位角相等两直线平行填空即可.【题目详解】证明:是的角平分线(角平分线的定义)又(等量代换)(内错角相等,两直线平行)(两直线平行,同旁内角互补)又(同角的补角相等)(同位角相等,两直线平行)【题目点拨】此题考查平行线的性质及判定,同角的补角相等,角平分线的定义,熟练运用是解题的关键.22、(1)李强的速度为80米/分,张明的速度为1米/分.(2)【分析】(1)设李强的速度为x米/分,则张明的速度为(x+220)米/分,根据等量关系:张明和李强所用时间相同,列出方程求解即可;(2)①根据路程一定,时间与速度成反比,可求李强跑了多少分钟;②先根据路程一定,时间与速度成反比,可求李强跑了多少分钟,进一步得到张明跑了多少分钟,再根据速度=路程÷时间求解即可.【题目详解】(1)设李强的速度为x米/分,则张明的速度为(x+220)米/分,根据题意得:,解得:x=80,经检验,x=80是原方程的根,且符合题意,∴x+220=1.答:李强的速度为80米/分,张明的速度为1米/分.(2)①∵m=12,n=5,∴5÷(12-1)=(分钟).故李强跑了分钟;②李强跑了的时间:分钟,张明跑了的时间:分钟,张明的跑步速度为:6000÷米/分.【题目点拨】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.23、(1)-4,2,-1;(2)见解析;(2)-4<-1<2【分析】(1)根据立方根的定义,算术平方根的定义和最大负整数求出即可;(2)把各个数在数轴上表示出来即可;(2)根据实数的大小比较法则比较即可.【题目详解】(1)∵﹣64的立方根为a,9的算术平方根为b,最大负整数是c,∴a=-4,b=2,c=-1.故答案为:-4,2,-1;(2)在数轴上表示为:(2)-4<-1<2.【题目点拨】本题考查了算术平方根,立方根,正数和负数,数轴和实数的大小比较等知识点,能求出各数是解答本题的关键.24、(1)见解析;(2)(ⅰ)BF=(2+)CF;理由见解析;(ⅱ)BP=.【分析】(1)先求出∠BAE+∠ABC=180°,再根据同旁内角互补两直线平行,即可证明AE∥BC.(2)(ⅰ)过点A作AH⊥BC于H,如图1所示,先证明△ABH、△BAF是等腰直角三角形,再根据等腰直角三角形的性质,求证BF=(2+)CF即可.(ⅱ)①当点F在点C的左侧时,作PG⊥AB于G,如图2所示,先通过三角形面积公式求出AF的长,再根据勾股定理求得BF、AC、BD的长,证明Rt△BPG≌Rt△BPF(HL),以此得到AD的长,设AP=x,则PG=PF=6﹣x,利用勾股定理求出AP的长,再利用勾股定理求出PD的长,通过BP=BD﹣PD即可求出线段BP的长.②当点F在点C的右侧时,则∠CAF=∠ACF',P’和F’分别对应图2中的P和F,如图3所示,根据等腰三角形的性质求得PD=P'D=,再根据①中的结论,可得BP=BP'+P'P=.【题目详解】(1)∵AC平分钝角∠BAE,BD平分∠ABC,∴∠BAE=2∠BAD,∠ABC=2∠ABD,∴∠BAE+∠ABC=2(∠BAD+∠ABD)=2×90°=180°,∴AE∥BC;(2)解:(ⅰ)BF=(2+)CF;理由如下:∵∠BAD+∠ABD=90°,∴BD⊥AC,∴∠CBD+∠BCD=90°,∵∠ABD=∠CBD,∴∠BAD=∠BCD,∴AB=BC,过点A作AH⊥BC于H,如图1所示:∵∠ABC=45°,AF⊥AB,∴△ABH、△BAF是等腰直角三角形,∴AH=BH=HF,BC=AB=BH,BF=AB=×BH=2BH,∴CF=BF﹣BC=2BH﹣BH=(2﹣)BH,∴BH==(1+)CF,∴BF=2(1+)CF=(2+)CF;(ⅱ)①当点F在点C的左侧时,如图2所示:同(ⅰ)得:∠BAD=∠BCD,∴AB=BC=10,∵∠CAF=∠ABD,∠BAD+∠ABD=90°,∴∠BCD+∠CAF=90°,∴∠AFC=90°,∴AF⊥BC,则S△ABC=BC•AF=×10×AF=30,∴AF=6,∴BF==8,∴CF=BC﹣BF=10﹣8=2,∴AC==2,∵S△ABC=AC•BD=×2×BD=30,∴BD=3,作PG⊥AB于G,则PG=PF,在Rt△BPG和Rt△B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论