




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省九江市2024届数学八上期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是()A.B.C.D.2.已知是整数,点在第四象限,则的值是()A. B.0 C.1 D.23.如图,在Rt△ABC中,∠ACB=90°,D是AB中点,AB=10,则CD的长为()A.5 B.6 C.8 D.104.下列三条线段中,能构成三角形的是()A.3,4,8 B.5、6,7 C.5,5,10 D.5,6,115.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A. B. C. D.6.下列计算,正确的是()A. B.a3÷a=a3 C.a2+a2=a4 D.(a2)2=a47.小明学了利用勾股定理在数轴上找一个无理数的准确位置后,又进一步进行练习:首先画出数轴,设原点为点O,在数轴上的2个单位长度的位置找一个点A,然后过点A作AB⊥OA,且AB=1.以点O为圆心,OB为半径作弧,设与数轴右侧交点为点P,则点P的位置在数轴上()A.1和2之间B.2和1之间C.1和4之间D.4和5之间8.下列选项中,可以用来说明命题“若,则”属于假命题的反例是()A., B.,C., D.,9.小莹和小博士下棋小莹执圆子,小博士执方子如图,棋盘中心方子的位置用表示,左下角方子的位置用表示,小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,她放的位置是A. B. C. D.10.张老师对本班40名学生的血型作了统计,列出如下的统计表,则本班AB型血的人数是()组别A型B型AB型O型频率0.40.350.10.15A.16人 B.14人 C.6人 D.4人二、填空题(每小题3分,共24分)11.若a+b=﹣3,ab=2,则_____.12.用科学记数法表示:0.000002018=_____.13.如果一个三角形的两边长分别是2cm和7cm,且第三边为奇数,则三角形的周长是___cm.14.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.15.如图,正方形的边长为5,,连结,则线段的长为________.16.如图,等腰△ABC中,AB=AC,∠BAC=120°,AE⊥AC,DE垂直平分AB于D,若DE=2,则EC=_____.17.函数的自变量的取值范围是.18.点(3,)关于轴的对称点的坐标是__________.三、解答题(共66分)19.(10分)常用的分解因式的方法有提取公因式法、公式法,但有更多的多项式只用上述方法就无法分解,如,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了,过程为:,这种分解因式的方法叫分组分解法,利用这种方法解决下列问题.(1)分解因式:;(2)△ABC三边a、b、c满足,判断△ABC的形状.20.(6分)如图,射线平分,,求证:.21.(6分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;
平均数(分)
中位数(分)
众数(分)
初中部
85
高中部
85
100
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.22.(8分)阅读下列一段文字,然后回答下列问题.已知平面内两点M(x1,y1)、N(x2,y2),则这两点间的距离可用下列公式计算:MN=.例如:已知P(3,1)、Q(1,﹣2),则这两点间的距离PQ==.特别地,如果两点M(x1,y1)、N(x2,y2)所在的直线与坐标轴重合或平行于坐标轴或垂直于坐标轴,那么这两点间的距离公式可简化为MN=丨x1﹣x2丨或丨y1﹣y2丨.(1)已知A(1,2)、B(﹣2,﹣3),试求A、B两点间的距离;(2)已知A、B在平行于x轴的同一条直线上,点A的横坐标为5,点B的横坐标为﹣1,试求A、B两点间的距离;(3)已知△ABC的顶点坐标分别为A(0,4)、B(﹣1,2)、C(4,2),你能判定△ABC的形状吗?请说明理由.23.(8分)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①;②;③;④.其中是“和谐分式”是(填写序号即可);(2)若a为正整数,且为“和谐分式”,请写出a的值;(3)在化简时,小东和小强分别进行了如下三步变形:小东:原式===,小强:原式==,显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:,请你接着小强的方法完成化简.24.(8分)如图(1)是一个长为,宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按照图(2)的形状拼成一个正方形.(1)请用两种不同的方法求图(2)中阴影部分的面积。方法1.________________;方法2:______________.请你写出下列三个式子:之间的等量关系___________;(2)根据(1)题中的等量关系,解决下列问题:已知,求;(3)实际上有许多恒等式可以用图形的面积来表示,如图(3),它表示的恒等式是___________.25.(10分)现有3张边长为的正方形纸片(类),5张边长为的矩形纸片(类),5张边长为的正方形纸片(类).我们知道:多项式乘法的结果可以利用图形的面积表示.例如:就能用图①或图②的面积表示.(1)请你写出图③所表示的一个等式:_______________;(2)如果要拼一个长为,宽为的长方形,则需要类纸片_____张,需要类纸片_____张,需要类纸片_____张;(3)从这13张纸片中取出若干张,每类纸片至少取出一张,把取出的这些纸片拼成一个正方形(按原纸张进行无缝隙,无重叠拼接),则拼成的正方形的边长最长可以是_______(用含的式子表示).26.(10分)已知一次函数与的图象如图所示,且方程组的解为,点的坐标为,试确定两个一次函数的表达式.
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】试题解析:选项A是轴对称图形,选项B、C、D都不是轴对称图形,判断一个图形是不是轴对称图形,关键在于看是否存在一条直线,使得这个图形关于这条直线对称.故选A.考点:轴对称图形.2、C【分析】根据第四象限内的点的坐标特征:横坐标>0,纵坐标<0,列出不等式,即可判断.【题目详解】解:∵点在第四象限,∴解得:∵是整数,∴故选C.【题目点拨】此题考查的是根据点所在的象限,求坐标中参数的取值范围,掌握各个象限内的点的坐标特征是解决此题的关键.3、A【分析】根据直角三角形斜边上的中线等于斜边的一半解答即可.【题目详解】∵∠ACB=90°,D是AB中点,∴CD=AB=5,故选:A.【题目点拨】本题考查的是直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.4、B【分析】根据三角形的三边关系进行分析判断.【题目详解】解:根据三角形任意两边的和大于第三边,得
A,3+4=7<8,不能组成三角形;
B,5+6=11>7,能组成三角形;
C,5+5=10,不能够组成三角形;
D,5+6=11,不能组成三角形.
故选:B.【题目点拨】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.5、B【题目详解】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选B.考点:作图—复杂作图6、D【分析】运用同底数幂的乘法、同底数幂除法、合并同类项以及幂的乘方进行运算即可判断.【题目详解】A、错误,该选项不符合题意;B、错误,该选项不符合题意;C、错误,该选项不符合题意;D、正确,该选项符合题意;故选:D.【题目点拨】本题考查了同底数幂的乘法、同底数幂除法、合并同类项以及幂的乘方的运算法则,掌握相关运算法则是解答本题的关键.7、C【分析】根据勾股定理求出OB的长,从而得OP的长,进而即可得到点P在数轴上的位置.【题目详解】解:∵ABOA,OA=2,AB=1,∴根据勾股定理可得:,又∵以O为圆心,OB为半径作圆,所得圆弧交x轴为点P,∴OP=OB=,又∵1<<4,∴点P的位置位于1和4的中间,故选:C.【题目点拨】本题考察了勾股定理、数轴上点的表示方式、圆的概念辨析,解题的关键在于通过勾股定理求出圆的半径OB的长度,同时又要掌握圆上任意一点到圆心的距离相等.8、C【分析】据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.【题目详解】∵当a=-1,b=−2时,(−2)2>(−1)2,但是−2<-1,∴,是假命题的反例.故选:C.【题目点拨】此题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.9、B【解题分析】首先确定x轴、y轴的位置,然后根据轴对称图形的定义确定放的位置.【题目详解】解:棋盘中心方子的位置用表示,则这点所在的横线是x轴,左下角方子的位置用,则这点向右两个单位所在的纵线是y轴,则小莹将第4枚圆子放的位置是时构成轴对称图形.故选:B.【题目点拨】本题考查了轴对称图形和坐标位置的确定,正确确定x轴、y轴的位置是关键.10、D【分析】根据题意计算求解即可.【题目详解】由题意知:共40名学生,由表知:P(AB型)=.∴本班AB型血的人数=40×0.1=4名.故选D.【题目点拨】本题主要考查了概率的知识,正确掌握概率的知识是解题的关键.二、填空题(每小题3分,共24分)11、5【分析】将a+b=﹣3两边分别平方,然后利用完全平方公式展开即可求得答案.【题目详解】∵a+b=﹣3,∴(a+b)2=(﹣3)2,即a2+2ab+b2=9,又∵ab=2,∴a2+b2=9-2ab=9-4=5,故答案为5.【题目点拨】本题考查了根据完全平方公式的变形求代数式的值,熟练掌握完全平方公式的结构特征是解题的关键.12、2.018×10﹣1.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:数字0.000002018用科学记数法表示为2.018×10﹣1,故答案是:2.018×10﹣1.【题目点拨】本题主要考查科学记数法,掌握科学记数法是解题的关键.13、16【分析】根据三角形的三边关系定理求出第三边的长,即可得出结论.【题目详解】∵7﹣2<第三边<7+2,∴5<第三边<1.∵第三边为奇数,∴第三边=7,所以三角形的周长是2+7+7=16(cm).故答案为16cm.【题目点拨】首先根据题意求出第三边,然后再求出周长.14、【解题分析】试题解析:∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=3,
∴BD=2OB=6,
∴AD=.【题目点拨】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.15、【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2、HE=CH-CE=2、∠HEG=90°,由勾股定理可得GH的长.【题目详解】解:如图,延长BG交CH于点E,
∵正方形的边长为5,,∴AG2+BG2=AB2,∴∠AGB=90°,在△ABG和△CDH中,∴△ABG≌△CDH(SSS),
∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,
∴∠1+∠2=90°,∠5+∠6=90°,
又∵∠2+∠3=90°,∠4+∠5=90°,
∴∠1=∠3=∠5,∠2=∠4=∠6,
在△ABG和△BCE中,∴△ABG≌△BCE(ASA),
∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,
∴GE=BE-BG=4-3=1,
同理可得HE=1,
在RT△GHE中,故答案为:【题目点拨】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.16、1【分析】由DE垂直平分AB,可得AE=BE,由△ABC中,AB=AC,∠BAC=120°,可求得∠B=∠C=∠EAB=30°,继而求得AE的长,继而求得答案.【题目详解】∵△ABC中,AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵DE垂直平分AB,∴AE=BE,∴∠EAB=∠B=30°,∴AE=BE=2DE=2×2=4,∴∠EAC=∠BAC-∠BAE=90°,∴CE=2AE=1,故答案为1.【题目点拨】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.17、x≠1【解题分析】该题考查分式方程的有关概念根据分式的分母不为0可得X-1≠0,即x≠1那么函数y=的自变量的取值范围是x≠118、(3,2)【解题分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P'的坐标是(x,﹣y),进而求出即可.【题目详解】点(3,﹣2)关于x轴的对称点坐标是(3,2).故答案为(3,2).【题目点拨】本题考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题的关键.三、解答题(共66分)19、(1);(2)△ABC的形状是等腰三角形;【分析】(1)先根据完全平方公式进行分解,再根据平方差公式分解即可;(2)先从中提取公因式,从中提取公因式,再提取它们的公因式,最后根据,判断出△ABC是等腰三角形.【题目详解】(1);(2)∵,,∴,∴,∵,∴,∴,∴的形状是等腰三角形.【题目点拨】本题主要考查因式分解及应用,熟练运用分组分解法是关键.20、证明见解析.【分析】先根据角平分线的定义得出,再根据三角形的外角性质得出,然后根据三角形全等的判定定理与性质即可得证.【题目详解】证明:平分在和中,.【题目点拨】本题考查了角平分线的定义、三角形全等的判定定理与性质等知识点,依据角平分线的定义得出是解题关键.21、(1)
平均数(分)
中位数(分)
众数(分)
初中部
85
85
85
高中部
85
80
100
(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解题分析】解:(1)填表如下:
平均数(分)
中位数(分)
众数(分)
初中部
85
85
85
高中部
85
80
100
(2)初中部成绩好些.∵两个队的平均数都相同,初中部的中位数高,∴在平均数相同的情况下中位数高的初中部成绩好些.(3)∵,,∴<,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答.(2)根据平均数和中位数的统计意义分析得出即可.(3)分别求出初中、高中部的方差比较即可.22、(1)(2);(3)△ABC是直角三角形,【解题分析】(1)(2)根据两点间的距离公式即可求解;
(3)先根据两点间的距离公式求出AB,BC,AC的长,再根据勾股定理的逆定理即可作出判断.【题目详解】(1)(2)(3)△ABC是直角三角形,理由:∵∴∴∴△ABC是直角三角形.【题目点拨】本题主要考查两点间的距离公式,难度较大,解决本题的关键是熟练掌握两点间的距离公式,两点间的距离公式:若平面内两点M(x1,y1)、N(x2,y2),则MN=.注意熟记公式.23、(1)②;(2)4,5;(3)见解析.【分析】(1)根据题意可以判断题目中的各个小题哪个是和谐分式,从而可以解答本题;(2)根据和谐分式的定义可以得到的值;(3)根据题意和和谐分式的定义可以解答本题.【题目详解】(1)②分式=,不可约分,∴分式是和谐分式,故答案为②;(2)∵分式为和谐分式,且a为正整数,∴a=4,a=﹣4(舍),a=5;(3)小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分时,利用和谐分式找到了最简公分母,原式====故答案为小强通分时,利用和谐分式找到了最简公分母.【题目点拨】本题考查约分,解答本题的关键是明确题意,找出所求问题需要的条件,利用和谐分式的定义解答.24、(1)(m-n)2,,;(2)1;(3)【分析】(1)运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释;(2)常见验证完全平方公式的几何图形(a+b)2=a2+2ab+b2,(用大正方形的面积等于边长为a和边长为b的两个正方形与两个长宽分别是a,b的长方形的面积和作为相等关系)对a,b数值变换后的几何图解法,充分利用了数形结合的思想方法;(3)图③的面积计算也有两种方法,方法一是大长方形(长为的2m+n,宽为m+n)的面积是(2m+n)(m+n),方法二是组成大长方形的各个小长方形或正方形的面积和等于大长方形的面积,故而得到了代数恒等式.【题目详解】(1)方法1:阴影部分是一个正方形,边长为m-n,根据阴影部分正方形面积计算公式可得S阴=(m-n)2,方法2:大正方形边长为m+n,面积是:(m+n)2,四个长为m,宽为n的长方形的面积是4mn,阴影部分的面积是大正方形的面积减去四个长方形的面积S阴=(m+n)2-4mn,方法1与方法2均为求图②中阴影
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同欠款起诉费用3篇
- 农产品购买合同的交货条款3篇
- 工程设计施工合同范本的建设周期
- 土地使用权及房屋买卖合同3篇
- 买房授权委托书样本格式3篇
- 劳动合同解除公告3篇
- 学生社会实践承诺函3篇
- 合伙关系终止合同3篇
- 2025基于社区的阿尔茨海默病三级综合防治中国专家共识
- 煤炭加工厂的环境影响评价与环境保护措施考核试卷
- 2022年高级经济师《运输经济》试题真题及答案
- 餐饮部菜品制作流程优化方案
- 2023-2024学年沪科版(2019)高中信息技术必修一第三单元项目六《解决温标转换问题-认识程序和程序设计语言》教学设计
- 《猪的传染病》课件
- 非煤矿山安全生产作业指导书
- 《新媒体营销》课件-项目一 新媒体营销认知
- 医学伦理学的伦理原则
- 2025年春新人教PEP版英语三年级下册课件 Revision Going to a school fair-第2课时
- 《健康进课堂》2024年幼儿园家长助教医疗版
- 《汽车涂装》2024-2025学年第一学期工学一体化课程教学进度计划表
- 小学生涯回顾分享模板
评论
0/150
提交评论