四川省南充市陈寿中学2024届八年级数学第一学期期末考试试题含解析_第1页
四川省南充市陈寿中学2024届八年级数学第一学期期末考试试题含解析_第2页
四川省南充市陈寿中学2024届八年级数学第一学期期末考试试题含解析_第3页
四川省南充市陈寿中学2024届八年级数学第一学期期末考试试题含解析_第4页
四川省南充市陈寿中学2024届八年级数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省南充市陈寿中学2024届八年级数学第一学期期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.三个连续正整数的和小于14,这样的正整数有()A.2组 B.3组 C.4组 D.5组2.下列式子为最简二次根式的是()A. B. C. D.3.下列各式中,能运用“平方差公式”进行因式分解的是()A. B. C. D.4.将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是()A.45°B.50°C.60°D.75°5.在△ABC中,已知AB=4cm,BC=9cm,则AC的长可能是()A.5cm B.12cm C.13cm D.16cm6.把分解因式得()A. B.C. D.7.如图,在中,,,平分,、分别是、上的动点,当最小时,的度数为()A. B. C. D.8.下列四个分式中,是最简分式的是()A. B. C. D.9.下列各式,能写成两数和的平方的是()A. B. C. D.10.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°二、填空题(每小题3分,共24分)11.因式分解:______.12.已知,点在的内部,点和点关于对称,点和点关于对称,则三点构成的三角形是__________三角形.13.等腰三角形一腰上的高线与另一腰夹角为50°,则该三角形的顶角为_____.14.如图,D、E为△ABC两边AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=55°,则∠BDF=_______°.15.已知一张三角形纸片如图甲,其中将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为如图乙再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为如图丙原三角形纸片ABC中,的大小为______16.跳远运动员李阳对训练效果进行测试.6次跳远的成绩如下:7.5,7.7,7.6,7.7,7.9,7.8(单位:m)这六次成绩的平均数为7.7m,方差为.如果李阳再跳一次,成绩为7.7m.则李阳这7次跳远成绩的方差_____(填“变大”、“不变”或“变小”).17.如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.18.规定,若,则x的值是_____.三、解答题(共66分)19.(10分)老陶手机店销售型和型两种型号的手机,销售一台型手机可获利元,销售一台型手机可获利元.手机店计划一次购进两种型号的手机共台,其中型手机的进货量不超过型手机的倍设购进型手机台,这台手机的销售总利润为元.(1)求与的关系式.(2)该手机店购进型、型手机各多少台,才能使销售利润最大.20.(6分)在平面直角坐标系中,一次函数yx+4的图象与x轴和y轴分别交于A、B两点.动点P从点A出发,在线段AO上以每秒1个单位长度的速度向点O作匀速运动,到达点O即停止运动.其中A、Q两点关于点P对称,以线段PQ为边向上作正方形PQMN.设运动时间为秒.如图①.(1)当t=2秒时,OQ的长度为;(2)设MN、PN分别与直线yx+4交于点C、D,求证:MC=NC;(3)在运动过程中,设正方形PQMN的对角线交于点E,MP与QD交于点F,如图2,求OF+EN的最小值.21.(6分)解方程组:(1);(2).22.(8分)综合与探究[问题]如图1,在中,,过点作直线平行于,点在直线上移动,角的一边DE始终经过点,另一边与交于点,研究和的数量关系.[探究发现](1)如图2,某数学学习小组运用“从特殊到一般”的数学思想,发现当点移动到使点与点重合时,很容易就可以得到请写出证明过程;[数学思考](2)如图3,若点是上的任意一点(不含端点),受(1)的启发,另一个学习小组过点,交于点,就可以证明,请完成证明过程;[拓展引申](3)若点是延长线上的任意一点,在图(4)中补充完整图形,并判断结论是否仍然成立.23.(8分)如图,在四边形ABCD中,∠B=90°,DE//AB交BC于E、交AC于F,∠CDE=∠ACB=30°,BC=DE.(1)求证:△ACD是等腰三角形;(2)若AB=4,求CD的长.24.(8分)化简:25.(10分)列方程解应用题:为了提升阅读速度,某中学开设了“高效阅读”课.小敏经过一段时间的训练,发现自己现在每分钟阅读的字数比原来的2倍还多300字,现在读9100字的文章与原来读3500字的文章所用的时间相同.求小敏原来每分钟阅读的字数.26.(10分)甲、乙两人分别从丙、丁两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达丁地后,乙继续前行.设出发后,两人相距,图中折线表示从两人出发至乙到达丙地的过程中与之间的函数关系.根据图中信息,求:(1)点的坐标,并说明它的实际意义;(2)甲、乙两人的速度.

参考答案一、选择题(每小题3分,共30分)1、B【分析】设最小的正整数为x,根据题意列出不等式,求出正整数解即可得到答案.【题目详解】解:设最小的正整数为x,由题意得:x+x+1+x+2<14,解得:,∴符合题意的x的值为1,2,3,即这样的正整数有3组,故选:B.【题目点拨】本题考查了一元一次不等式的应用,正确列出不等式是解题的关键.2、B【分析】最简二次根式满足:被开方数不含分母;被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.【题目详解】A.,故不符合题意;B.是最简二次根式,符合题意;C.,故不符合题意;D.,故不符合题意.故选:B【题目点拨】本题考查最简二次根式的定义,掌握最简二次根式必须满足的两个条件是解题关键.3、B【分析】根据平方差公式的特点:①两项式;②两个数的平方差,对每个选项进行判断即可.【题目详解】A.,提公因式进行因式分解,故A选项不符合题意B.,利用平方差公式进行因式分解,故B选项符合题意C.=(x-2),运用完全平方公式进行因式分解,故C选项不符合题意D.,不能因式分解,故D选项不符合题意故选:B【题目点拨】本题考查了用平方差公式进行因式分解的知识,解题的关键是掌握平方差公式特点.4、D【解题分析】本题主要根据直角尺各角的度数及三角形内角和定理解答.解:∵∠C=30°,∠DAE=45°,AE∥BC,∴∠EAC=∠C=30°,∠FAD=45﹣30=15°,在△ADF中根据三角形内角和定理得到:∠AFD=180﹣90﹣15=75°.故选D.5、B【分析】根据三角形的三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边,求出AC的取值范围,然后逐项判断即可.【题目详解】由三角形的三边关系定理得因此,只有B选项满足条件故选:B.【题目点拨】本题考查了三角形的三边关系定理,熟记定理是解题关键.6、D【分析】首先利用平方差公式分解因式,进而利用完全平方公式分解因式得出即可.【题目详解】解:

故选:D.【题目点拨】本题主要考查了公式法因式分解,正确应用乘法公式是解题关键.7、B【分析】在AC上截取AE=AN,先证明△AME≌△AMN(SAS),推出ME=MN.当B、M、E共线,BE⊥AC时,BM+ME最小,可求出∠NME的度数,从而求出∠BMN的度数.【题目详解】如图,在AC上截取AE=AN,∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,,∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME,当B、M、E共线,BE⊥AC时,BM+ME最小,∴MN⊥AB∵∠BAC=68°∴∠NME=360°-∠BAC-∠MEA-∠MNA=360°-68°-90°-90°=112°,∴∠BMN=180°-112°=68°.故选:B.【题目点拨】本题考查了轴对称-最短问题,解题的关键是能够通过构造全等三角形,把BM+MN进行转化,利用垂线段最短解决问题.8、A【分析】根据最简分式的概念,可把各分式因式分解后,看分子分母有没有公因式.【题目详解】是最简分式;==x+1,不是最简分式;=,不是最简分式;==a+b,不是最简分式.故选A.【题目点拨】此题主要考查了最简分式的概念,一个分式的分子与分母没有非零次的公因式时叫最简分式,看分式的分子分母有没有能约分的公因式是解题关键.9、D【分析】直接利用完全平方公式判断得出答案.【题目详解】∵x2+1x+1=(x+2)2,∴能写成两数和的平方的是x2+1x+1.故选D.【题目点拨】本题考查了完全平方公式,掌握完全平方公式是解答本题的关键.10、C【分析】根据CE是△ABC的外角∠ACD的平分线,∠ACE=60°,得出∠ACD=120°;再根据三角形的外角等于与它不相邻的两个内角和即可求解.【题目详解】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°∴∠ACD=2∠ACE=120°∵∠ACD=∠B+∠A∴∠A=∠ACD-∠B=120°-35°=85°故选:C.【题目点拨】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.二、填空题(每小题3分,共24分)11、【分析】利用平方差公式进行因式分解.【题目详解】解:.故答案是:.【题目点拨】本题考查因式分解,解题的关键是掌握因式分解的方法.12、等边【分析】根据轴对称的性质可知:OP1=OP2=OP,∠P1OP2=60°,即可判断△P1OP2是等边三角形.【题目详解】根据轴对称的性质可知,OP1=OP2=OP,∠P1OP2=60°,∴△P1OP2是等边三角形.故答案为:等边.【题目点拨】主要考查了等边三角形的判定和轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.13、40°或140°【分析】分两种情况讨论:锐角三角形与钝角三角形,作出图形,互余和三角形的外角性质即可求解.【题目详解】解:如图1,三角形是锐角三角形时,∵∠ACD=50°,∴顶角∠A=90°﹣50°=40°;如图2,三角形是钝角形时,∵∠ACD=50°,∴顶角∠BAC=50°+90°=140°,综上所述,顶角等于40°或140°.故答案为:40°或140°.【题目点拨】本题考查根据等腰三角形的性质求角度,作出图形,分类讨论是解题的关键.14、1【分析】由于折叠,可得三角形全等,运用三角形全等得出∠ADE=∠FDE=55°,则∠BDF即可求.【题目详解】解:∵D、E为△ABC两边AB、AC的中点,即DE是三角形的中位线.∴DE∥BC∴∠ADE=∠B=55°∴∠EDF=∠ADE=55°∴∠BDF=180-55-55=1°.故答案为:1.15、72;【分析】根据题意设∠A为x,再根据翻折的相关定义得到∠A的大小,随之即可解答.【题目详解】设∠A为x,则由翻折对应角相等可得∠EDA=∠A=x,由∠BED是△AED的外角可得∠BED=∠EDA+∠A=2x,则由翻折对应角相等可得∠C=∠BED=2x,因为AB=AC,所以∠ABC=∠C=2x,在△ABC中,∠ABC+∠C+∠A=2x+2x+x=180°,所以x=36°,则∠ABC=2x=72°.故本题正确答案为72°.【题目点拨】本题主要考查三角形内角和定理和等腰三角形的性质.16、变小【分析】根据平均数的求法先求出这组数据的平均数,再根据方差公式求出这组数据的方差,然后进行比较即可求出答案.【题目详解】解:∵李阳再跳一次,成绩为7.7m,∴这组数据的平均数是=7.7,∴这7次跳远成绩的方差是:S2=[(7.5﹣7.7)2+(7.6﹣7.7)2+3×(7.7﹣7.7)2+(7.8﹣7.7)2+(7.9﹣7.7)2]=,∴方差变小;故答案为:变小.【题目点拨】本题主要考查平均数和方差,掌握平均数和方差的求法是解题的关键.17、12°.【解题分析】设∠A=x,∵AP1=P1P2=P2P3=…=P13P14=P14A,∴∠A=∠AP2P1=∠AP13P14=x.∴∠P2P1P3=∠P13P14P12=2x,∠P2P3P4=∠P13P12P10=3x,……,∠P7P6P8=∠P8P9P7=7x.∴∠AP7P8=7x,∠AP8P7=7x.在△AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°.解得x=12°,即∠A=12°.18、【分析】根据题中的新定义化简所求式子,计算即可求出的值.【题目详解】∵,根据题意得到分式方程:,

整理,得:,解得:,经检验,是分式方程的解,

故答案是:.【题目点拨】本题考查了解分式方程,弄清题中的新定义是解本题的关键.注意解分式方程需检验.三、解答题(共66分)19、(1),(2)台型手机,台型手机.【分析】(1)由总利润等于销售,型手机获得的利润之和,从而可得答案;(2)由型手机的进货量不超过型手机的倍列不等式求解的范围,再利用函数的性质求解最大的销售利润即可得到答案.【题目详解】解:(1)由题意得:.(2)根据题意得:,解得,,,随的增大而减小,为正整数,当时,取最大值,则,即商店购进台型手机,台型手机才能使销售利润最大.【题目点拨】本题考查的是一次函数的应用,一元一次不等式的应用,利用函数的性质求最大利润,掌握以上知识是解题的关键.20、(1)2;(2)证明见解析;(3).【分析】(1)解方程得到OA=1,由t=2,于是得到结论;

(2)根据AP=PQ=t,得到OQ=1-2t,根据正方形的性质得到PQ=QM=MN=PN=t,求得M(1-2t,t),N(1-t,t),C(1-t,t),求得CM=(1-t)-(1-2t)=t,CN=(1-t)-(1-t)=t,于是得到结论;

(3)作矩形NEFK,则EN=FK,推出当O,F,K三点共线时,OF+EN=OF+FK的值最小,如图,作OH⊥QN于H,解直角三角形即可得到结论.【题目详解】(1)在yx+4中,令y=0,得x=1,∴OA=1.∵t=2,∴AP=PQ=2,∴OQ=1﹣2﹣2=2.故答案为:2;(2)∵AP=PQ=t,∴OQ=1﹣2t.∵四边形PQMN是正方形,∴PQ=QM=MN=PN=t,∴M(1﹣2t,t),N(1﹣t,t),C(1t,t),∴CM=(1t)﹣(1﹣2t)t,CN=(1﹣t)﹣(1t)t,∴CM=CN;(3)作矩形NEFK,则EN=FK.∵OF+EN=OF+FK,∴当O,F,K三点共线时,OF+EN=OF+FK的值最小,如图,作OH⊥QN于H,在等腰直角三角形PQN中,∵PQ=t,∴QNt,∴HN=QN﹣QHt﹣(t﹣3)=3,∴OF+EN的最小值为:HE+EN=HN=3.【题目点拨】本题考查了一次函数的综合题,正方形的性质,矩形的性质,最短路线问题,正确的作出图形是解题的关键.21、(1);(2).【分析】(1)用加减消元法求解即可;(2)用加减消元法求解即可.【题目详解】解:(1),③①×5得:,③-②得:,解得:,把代入①得:,解得:,故方程组的解为:;(2)方程组整理得:,①+②得:,解得:,把代入①得:,解得:,故方程组的解为:.【题目点拨】本题主要考查解二元一次方程组,解题的关键是熟练掌握解二元一次方程组的步骤和消元的方法.22、[探究发现](1)见解析;[数学思考](2)见解析;[拓展引申](3)补充完整图形见解析;结论仍然成立.【分析】(1)根据等腰三角形性质和平行线性质可证;(2)在和中,证,得,可得;(3)根据题意画图,与(2)同理可得.【题目详解】[探究发现],,,且.即[数学思考].;在和中,.[拓展引申]如图,作,与(2)同理,可证,得.所以结论仍然成立.【题目点拨】考核知识点:等腰三角形判定和性质.运用全等三角形判定和性质解决问题是关键.23、(4)详见解析;(4)4.【解题分析】试题分析:(4)先根据条件证明△ABC≌△CED就可以得出∠CDE=∠ACB=40°,再计算出∠DCF=40°,这样就可以得出结论;(4)根据AB=4就可以求出AC的值,就可以求出CD.试题解析:(4)∵DE∥AB,∴∠DEC=∠B.在△ABC和△CED中,∴△ABC≌△CED(ASA)∴∠CDE=∠ACB=40°,∴∠DCE=40°,∴∠DCF=∠DCE-∠ACB=40°,∴∠DCF=∠CDF,∴△FCD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论