人教版八年级数学上册课件第十四章-整式的乘法_第1页
人教版八年级数学上册课件第十四章-整式的乘法_第2页
人教版八年级数学上册课件第十四章-整式的乘法_第3页
人教版八年级数学上册课件第十四章-整式的乘法_第4页
人教版八年级数学上册课件第十四章-整式的乘法_第5页
已阅读5页,还剩116页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

14.1整式的乘法第十四章整式的乘法与因式分解导入新课讲授新课当堂练习课堂小结14.1.1同底数幂的乘法

八年级数学上(RJ)

学习目标1.理解并掌握同底数幂的乘法法则.(重点)2.能够运用同底数幂的乘法法则进行相关计算.(难点)3.通过对同底数幂的乘法运算法则的推导与总结,提升自身的推理能力.导入新课问题引入神威·太湖之光超级计算机是由国家并行计算机工程技术研究中心研制的超级计算机.北京时间2016年6月20日,在法兰克福世界超算大会(ISC)上,“神威·太湖之光”超级计算机系统登顶榜单之首,成为世界上首台每秒运算速度超过十亿亿次(1017次)的超级计算机.它工作103s可进行多少次运算?讲授新课同底数幂相乘一互动探究神威·太湖之光超级计算机是世界上首台每秒运算速度超过十亿亿次(1017次)的超级计算机.它工作103s可进行多少次运算?问题1

怎样列式?1017×103问题2

在103中,10,3分别叫什么?表示的意义是什么?=10×10×103个10

相乘103底数幂指数问题3

观察算式1017×103,两个因式有何特点?观察可以发现,1017

和103这两个因数底数相同,是同底数的幂的形式.

我们把形如1017×103这种运算叫作同底数幂的乘法.问题4

根据乘方的意义,想一想如何计算1017×103?1017×103=(10×10×10×…×10)17个10×(10×10×10)3个10=10×10×…×1020个10=1020=1017+3(乘方的意义)(乘法的结合律)(乘方的意义)(1)25×22=2()根据乘方的意义填空,观察计算结果,你能发现什么规律?试一试=(2×2×2×2×2)×(2×2)=2×2×2×2×2×2×2=27(2)a3·a2=a()=(a﹒a﹒a)(a﹒a)=a﹒a﹒a﹒a﹒a=a575同底数幂相乘,底数不变,指数相加(3)5m×5n

=5()=(5×5×5×…×5)m个5×(5×5×5×…×5)n个5=5×5×…×5(m+n)个5=5m+n猜一猜am·an

=a()m+n注意观察:计算前后,底数和指数有何变化?am·an=(a·a·…a)(

个a)(a·a·…a)(

个a)=(a·a·…a)(__个a)=a()

(乘方的意义)(乘法的结合律)(乘方的意义)mn

m+nm+n证一证·am·an

=am+n

(m、n都是正整数).同底数幂相乘,底数,指数.不变相加.同底数幂的乘法法则:要点归纳结果:①底数不变②指数相加注意条件:①乘法②底数相同(1)

105×106=_____________;(2)

a7·a3=_____________;(3)

x5·x7=_____________;练一练

计算:(4)

(-b)3

·(-b)2=_____________.1011a10x12(-b)5=-b5a·a6·a3类比同底数幂的乘法公式am

·an=am+n(m、n都是正整数)am·an·ap=am+n+p(m、n、p都是正整数)想一想:当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?用字母表示等于什么呢?am·an·ap比一比=a7·a3=a10

下面的计算对不对?如果不对,应当怎样改正.(1)b3·b3=2b3(2)b3+b3=b6(3)a·a5·a3=a8(4)(-x)4·(-x)4=(-x)16××××b62b3=x8a9(-x)8练一练典例精析例1计算:(1)x2·x5;(2)a·a6;

(3)(-2)×(-2)4×

(-2)3;(4)

xm·x3m+1.

解:(1)x2·x5=

x2+5=x7

(2)a·a6=a1+6=a7;

(3)(-2)×(-2)4×

(-2)3=(-2)1+4+3=(-2)8=256;(4)

xm·x3m+1=xm+3m+1=

x4m+1.

a=a1例2计算:(1)(a+b)4·(a+b)7

;(2)(m-n)3·(m-n)5·(m-n)7

;(3)(x-y)2·(y-x)5.解:(1)(a+b)4·(a+b)7

=

(a+b)4+7=(a+b)11;

(2)(m-n)3·(m-n)5·(m-n)7

=(m-n)3+5+7=(m-n)15;(3)(x-y)2·(y-x)5=(y-x)2(y-x)5=(y-x)2+5=(y-x)7.方法总结:公式am·an=am+n中的底数a不仅可以代表数、单项式,还可以代表多项式等其他代数式.当底数互为相反数的幂相乘时,先把底数统一,再进行计算.n为偶数n为奇数想一想:am+n可以写成哪两个因式的积?同底数幂乘法法则的逆用am+n=am·an填一填:若xm

=3,xn

=2,那么,(1)xm+n=

×

=

×

=

;(2)x2m=

×

=

×

=

;(3)x2m+n

=

×

=

×

=

.xmxn632xmxm339x2mxn9218例3(1)若xa=3,xb=4,xc=5,求2xa+b+c的值.(2)已知23x+2=32,求x的值;

(2)∵23x+2=32=25,

∴3x+2=5,

∴x=1.解:(1)2xa+b+c=2xa·xb·xc=120.方法总结:(1)关键是逆用同底数幂的乘法公式,将所求代数式转化为几个已知因式的乘积的形式,然后再求值.(2)关键是将等式两边转化为底数相同的形式,然后根据指数相等列方程解答.当堂练习1.下列各式的结果等于26的是()A2+25B2·25

C23·25D0.22·

0.24B2.下列计算结果正确的是()Aa3·

a3=a9Bm2·

n2=mn4

Cxm·

x3=x3mDy·yn=yn+1D(1)x·x2·x()=x7;

(2)xm·()=x3m;(3)8×4=2x,则x=().45x2m4.填空:3.计算:(1)xn+1·x2n=_______;(2)(a-b)2·(a-b)3=_______;(3)-a4·(-a)2=_______;(4)y4·y3·y2·y

=_______.x3n+1(a-b)5-a6y105.计算下列各题:(4)-a3·(-a)2·(-a)3.(2)(a-b)3·(b-a)4;(3)(-3)×(-3)2×(-3)3;(1)(2a+b)2n+1·(2a+b)3;解:(1)(2a+b)2n+1·(2a+b)3=(2a+b)2n+4;(2)(a-b)3·(b-a)4=(a-b)7;(3)(-3)×(-3)2×(-3)3=36;(4)-a3·(-a)2·(-a)3=a8.(2)已知an-3·a2n+1=a10,求n的值;解:n-3+2n+1=10,

n=4;6.(1)已知xa=8,xb=9,求xa+b的值;解:xa+b=xa·xb

=8×9=72;(3)

3×27×9=32x-4,求x的值;解:3×27×9=3×33×32=32x-4,

2x-4=6;

x=5.课堂小结同底数幂的乘法法则am·an=am+n

(m,n都是正整数)注意同底数幂相乘,底数不变,指数相加am·an·ap=am+n+p(m,n,p都是正整数)直接应用法则常见变形:(-a)2=a2,(-a)3=-a3底数相同时底数不相同时先变成同底数再应用法则14.1整式的乘法第十四章整式的乘法与因式分解导入新课讲授新课当堂练习课堂小结14.1.2幂的乘方

八年级数学上(RJ)教学课件学习目标1.理解并掌握幂的乘方法则.(重点)2.会运用幂的乘方法则进行幂的乘方的运算.(难点)地球、木星、太阳可以近似地看做是球体.木星、太阳的半径分别约是地球的10倍和102倍,它们的体积分别约是地球的多少倍?V球=—πr3

,其中V是体积、r是球的半径34导入新课问题引入10103=边长2=边长×边长S正问题1

请分别求出下列两个正方形的面积?讲授新课幂的乘方一互动探究S小=10×10=102=103×103S正=(103)2=106=106问题2

请根据乘方的意义及同底数幂的乘法填空,观察计算的结果,你能发现什么规律?证明你的猜想.(32)3=___×___×___

=3(

)+(

)+(

)=3(

)×(

=3(

323232222236猜想:(am)n=_____.amn证一证:(am)nn个amn个m幂的乘方法则(am)n=amn

(m,n都是正整数)即幂的乘方,底数______,指数____.不变相乘例1

计算:(1)(103)5

解:(1)(103)5=103×5

=1015;(2)(a2)4

=a2×4=a8;(3)(am)2

=am·2=a2m;(3)(am)2;(2)(a2)4;典例精析(4)-(x4)3;(4)-(x4)3

=-x4×3=-x12.(6)[(﹣x)4]3.(5)[(x+y)2]3;(5)[(x+y)2]3=

(x+y)2×3

=(x+y)6;

(6)[(﹣x)4]3=

(﹣x)4×3

=(﹣x)12=x12.方法总结:运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆,在幂的乘方中,底数可以是单项式,也可以是多项式.(-a5)2表示2个-a5相乘,结果没有负号.比一比(-a2)5和(-a5)2的结果相同吗?为什么?不相同.(-a2)5表示5个-a2相乘,其结果带有负号.n为偶数n为奇偶数想一想:下面这道题该怎么进行计算呢?幂的乘方:=(a6)4=a24[(y5)2]2=______=________[(x5)m]n=______=________练一练:(y10)2y20(x5m)nx5mn例2

计算:典例精析(1)(x4)3·x6;(2)a2(-a)2(-a2)3+a10.解:(1)(x4)3·x6=x12·x6=x18;

(2)a2(-a)2(-a2)3+a10

=

-a2·a2·a6+a10

=

-a10+a10

=

0.忆一忆有理数混合运算的顺序先乘方,再乘除先乘方,再乘除,最后算加减底数的符号要统一方法总结:与幂的乘方有关的混合运算中,一般先算幂的乘方,再算同底数幂的乘法,最后算加减,然后合并同类项.例3

已知10m=3,10n=2,求下列各式的值.(1)103m;(2)102n;(3)103m+2n.解:(1)103m=(10m)3=33=27;

(2)102n=(10n)2=22=4;

(3)103m+2n=103m×102n=27×4=108.

方法总结:此类题的关键是逆用幂的乘方及同底数幂的乘法公式,将所求代数式正确变形,然后代入已知条件求值即可.(1)已知x2n=3,求(x3n)4的值;(2)已知2x+5y-3=0,求4x·32y的值.解:(1)(x3n)4=x12n=(x2n)6=36=729.(2)∵2x+5y-3=0,∴2x+5y=3,∴4x·32y=(22)x·(25)y=22x·25y=22x+5y=23=8.变式训练

例4

比较3500,4400,5300的大小.解析:这三个幂的底数不同,指数也不相同,不能直接比较大小,通过观察,发现指数都是100的倍数,故可以考虑逆用幂的乘方法则.解:3500=(35)100=243100,4400=(44)100=256100,5300=(53)100=125100.∵256100>243100>125100,∴4400>3500>5300.方法总结:比较底数大于1的幂的大小的方法有两种:(1)底数相同,指数越大,幂就越大;(2)指数相同,底数越大,幂就越大.故在此类题中,一般先观察题目所给数据的特点,将其转化为同底数的幂或同指数的幂,然后再进行大小比较.当堂练习1.(x4)2等于()A.x6 B.x8C.x16 D.2x4B2.下列各式的括号内,应填入b4的是()A.b12=(

)8 B.b12=(

)6C.b12=(

)3 D.b12=(

)2C3.下列计算中,错误的是()A.[(a+b)2]3=(a+b)6

B.[(a+b)2]5=(a+b)7C.[(a-b)3]n=(a-b)3n

D.[(a-b)3]2=(a-b)6B4.如果(9n)2=312,那么n的值是()A.4 B.3C.2 D.1B4.计算:(1)(102)8;(2)(xm)2;(3)[(-a)3]5(4)-(x2)m.解:(1)(102)8=1016.(2)(xm)2=x2m.(3)[(-a)3]5=(-a)15=-a15.(4)-(x2)m=-x2m.5.计算:(1)5(a3)4-13(a6)2;(2)7x4·x5·(-x)7+5(x4)4-(x8)2;(3)[(x+y)3]6+[-(x+y)2]9.解:(1)原式=5a12-13a12=-8a12.(2)原式=-7x9·x7+5x16-x16=-3x16.(3)原式=(x+y)18-(x+y)18=0.6.已知3x+4y-5=0,求27x·81y的值.解:∵3x+4y-5=0,∴3x+4y=5,∴27x·81y=(33)x·(34)y

=33x·34y

=33x+4y

=35

=243.

7.已知a=355,b=444,c=533,试比较a,b,c的大小.解:a=355=(35)11=24311,b=444=(44)11=25611,c=533=(53)11=12511.∵256>243>125,∴b>a>c.拓展提升课堂小结幂的乘方法则(am)n=amn(m,n都是正整数)注意幂的乘方,底数不变,指数相乘幂的乘方与同底数幂的乘法的区别:(am)n=amn;am﹒an=am+n幂的乘方法则的逆用:amn=(am)n=(an)m14.1.3积的乘方第十四章整式的乘法与因式分解导入新课讲授新课当堂练习课堂小结14.1整式的乘法

八年级数学上(RJ)教学课件学习目标1.理解并掌握积的乘方法则及其应用.(重点)2.会运用积的乘方的运算法则进行计算.(难点)我们居住的地球情境引入

大约6.4×103km你知道地球的体积大约是多少吗?球的体积计算公式:地球的体积约为导入新课问题引入

1.计算:(1)

10×102×103=______

;(2)

(x5)2=_________.x101062.(1)同底数幂的乘法:am·an=

(m,n都是正整数).am+n(2)幂的乘方:(am)n=

(m,n都是正整数).amn底数不变指数相乘指数相加同底数幂相乘幂的乘方其中m,n都是正整数(am)n=amnam·an=am+n想一想:同底数幂的乘法法则与幂的乘方法则有什么相同点和不同点?讲授新课积的乘方一问题1

下列两题有什么特点?(1)(2)底数为两个因式相乘,积的形式.这种形式为积的乘方我们学过的幂的乘方的运算性质适用吗?互动探究同理:(乘方的意义)(乘法交换律、结合律)(同底数幂相乘的法则)问题2

根据乘方的意义及乘法交换律、结合律进行计算:(ab)n=?(ab)n=(ab)·(ab)·····(ab)n个ab=(a·a·····a)·(b·b·····b)n个a

n个b=anbn.证明:思考问题:积的乘方(ab)n=?猜想结论:

因此可得:(ab)n=anbn

(n为正整数).

(ab)n=anbn

(n为正整数)推理验证

积的乘方,等于把积的每一个因式分别_____,再把所得的幂________.

(ab)n=anbn

(n为正整数)

想一想:三个或三个以上的积的乘方等于什么?

(abc)n

=anbncn

(n为正整数)知识要点积的乘方法则乘方相乘例1

计算:(1)(2a)3

;(2)(-5b)3

(3)(xy2)2

;(4)(-2x3)4.

解:(1)原式=

(2)原式=(3)原式=

(4)原式==8a3;=-125b3;

=x2y4;=16x12.(2)3a3(-5)3b3x2(y2)2(-2)4(x3)4典例精析方法总结:运用积的乘方法则进行计算时,注意每个因式都要乘方,尤其是字母的系数不要漏乘方.计算:(1)(-5ab)3;(2)-(3x2y)2;(3)(-3ab2c3)3;(4)(-xmy3m)2.针对训练(4)(-xmy3m)2=(-1)2x2my6m=x2my6m.解:(1)(-5ab)3=(-5)3a3b3=-125a3b3;(2)-(3x2y)2=-32x4y2=-9x4y2;(3)(-3ab2c3)3=(-3)3a3b6c9=-27a3b6c9;

×√×(1)(3cd)3=9c3d3;(2)(-3a3)2=-9a6;(3)(-2x3y)3=-8x6y3;×下面的计算对不对?如果不对,怎样改正?(4)(-ab2)2=a2b4.练一练例2

计算:(1)-4xy2·(xy2)2·(-2x2)3;(2)(-a3b6)2+(-a2b4)3.

解:(1)原式=-4xy2·x2y4·(-8x6)=32x9y6;(2)原式=a6b12+(-a6b12)=0;方法总结:涉及积的乘方的混合运算,一般先算积的乘方,再算乘法,最后算加减,然后合并同类项.如何简便计算(0.04)2004×[(-5)2004]2?议一议=(0.22)2004×54008=(0.2)4008×54008=(0.2×5)4008=14008

(0.04)2004×[(-5)2004]2=1.解法一:=(0.04)2004×[(-5)2]2004=(0.04×25)2004=12004=1.=(0.04)2004×(25)2004

(0.04)2004×[(-5)2004]2解法二:方法总结:逆用积的乘方公式an·bn=(ab)n,要灵活运用,对于不符合公式的形式,要通过恒等变形,转化为公式的形式,再运用此公式可进行简便运算.解:原式练一练

计算:当堂练习2.下列运算正确的是()

A.x.x2=x2B.(xy)2=xy2

C.(x2)3=x6D.x2+x2=x4C1.计算(-x2y)2的结果是()A.x4y2B.-x4y2C.x2y2D.-x2y2

A3.

计算:(1)82016×0.1252015=________;(2)________;(3)(0.04)2013×[(-5)2013]2=________.8-31(1)(ab2)3=ab6()×××(2)(3xy)3=9x3y3()×(3)(-2a2)2=-4a4()(4)-(-ab2)2=a2b4()4.判断:

(1)(ab)8;(2)(2m)3

;(3)(-xy)5;

(4)(5ab2)3;

(5)(2×102)2

;(6)(-3×103)3.5.计算:

解:(1)原式=a8b8;(2)原式=23

·m3=8m3;(3)原式=(-x)5·y5=-x5y5;(4)原式=53

·a3

·(b2)3=125a3b6;(5)原式=22×(102)2=4×104;(6)原式=(-3)3×(103)3=-27×109=-2.7×1010.(1)2(x3)2·x3-(3x3)3+(5x)2·x7;

(2)(3xy2)2+(-4xy3)·(-xy);

(3)(-2x3)3·(x2)2.解:原式=2x6·x3-27x9+25x2·x7

=2x9-27x9+25x9

=0;解:原式=9x2y4+4x2y4=13x2y4;解:原式=-8x9·x4=-8x13.6.计算:拓展提升:7.如果(an•bm•b)3=a9b15,求m,n的值.

(an)3•(bm)3•b3=a9b15,

a

3n•b3m•b3=a9b15,

a

3n•b

3m+3=a9b15,

3n=9

,3m+3=15.

n=3,m=4.解:∵(an•bm•b)3=a9b15,课堂小结幂的运算性质性质

am·an=am+n

(am)n=amn

(ab)n=anbn(m、n都是正整数)反向运用am·an=am+n(am)n=amnan·bn=

(ab)n可使某些计算简捷注意运用积的乘方法则时要注意:公式中的a、b代表任何代数式;每一个因式都要“乘方”;注意结果的符号、幂指数及其逆向运用(混合运算要注意运算顺序)14.1.4整式的乘法第十四章整式的乘法与因式分解导入新课讲授新课当堂练习课堂小结第1课时单项式与单项式、多项式相乘

八年级数学上(RJ)教学课件学习目标1.掌握单项式与单项式、单项式与多项式相乘的运算法则.(重点)2.能够灵活地进行单项式与单项式、单项式与多项式相乘的运算.(难点)导入新课复习引入1.幂的运算性质有哪几条?

同底数幂的乘法法则:am·an=am+n

(m、n都是正整数).幂的乘方法则:(am)n=amn(m、n都是正整数).积的乘方法则:(ab)n=anbn(m、n都是正整数).2.计算:(1)x2·x3·x4=

;(2)(x3)6=

;(3)(-2a4b2)3=

;(4)(a2)3·a4=

;(5)

.x9x18-8a12b6a101讲授新课单项式与单项式相乘一问题1

光的速度约为3×105km/s,太阳光照射到地球上需要的时间大约是5×102s,你知道地球与太阳的距离约是多少吗?地球与太阳的距离约是(3×105)×(5×102)km互动探究(3×105)×(5×102)=(3×5)×(105×102)=15×107.

乘法交换律、结合律

同底数幂的乘法这种书写规范吗?不规范,应为1.5×108.想一想:怎样计算(3×105)×(5×102)?计算过程中用到了哪些运算律及运算性质?问题2

如果将上式中的数字改为字母,比如ac5·bc2,怎样计算这个式子?根据以上计算,想一想如何计算单项式乘以单项式?

ac5·bc2=(a·b)·(c5·c2)(乘法交换律、结合律)=abc5+2(同底数幂的乘法)=abc7.单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.知识要点单项式与单项式的乘法法则

(1)系数相乘;(2)相同字母的幂相乘;(3)其余字母连同它的指数不变,作为积的因式.注意典例精析例1

计算:(1)(-5a2b)(-3a);

(2)

(2x)3(-5xy3).解:(1)(-5a2b)(-3a)=[(-5)×(-3)](a2•a)b=15a3b;(2)(2x)3(-5xy3)=8x3(-5xy3)=[8×(-5)](x3•x)y3=-40x4y3.单项式与单项式相乘有理数的乘法与同底数幂的乘法乘法交换律和结合律转化单项式相乘的结果仍是单项式方法总结:(1)在计算时,应先进行符号运算,积的系数等于各因式系数的积;(2)注意按顺序运算;(3)不要漏掉只在一个单项式里含有的字母因式;(4)此性质对于多个单项式相乘仍然成立.计算:(1)

3x2·5x3

;(2)4y·(-2xy2);

(3)

(-3x)2·4x2

(4)(-2a)3(-3a)2.解:(1)原式=(3×5)(x2·x3)=15x5;

(2)原式=[4×(-2)](y·y2)·x=-8xy3;

(3)

原式=9x2·4x2=(9×4)(x2·x2)=36x4;(4)原式=-8a3·9a2=[(-8)×9](a3·a2)=-72a5单独因式x别漏乘漏写有乘方运算,先算乘方,再算单项式相乘.注意针对训练下面计算结果对不对?如果不对,应当怎样改正?(1)3a3·2a2=6a6()改正:

.(2)2x2·3x2=6x4()改正:

.(3)3x2·4x2=12x2()改正:

.

(4)5y3·3y5=15y15()改正:

.3a3·2a2=6a5

3x2·4x2=12x45y3·3y5=15y8

×××练一练例2

已知-2x3m+1y2n与7xn-6y-3-m的积与x4y是同类项,求m2+n的值.解:∵-2x3m+1y2n与7xn-6y-3-m的积与x4y是同类项,∴m2+n=7.解得方法总结:单项式乘以单项式就是把它们的系数和同底数幂分别相乘,结合同类项的定义,列出二元一次方程组求出参数的值,然后代入求值即可.单项式与多项式相乘二问题如图,试求出三块草坪的总面积是多少?

如果把它看成三个小长方形,那么它们的面积可分别表示为_____、_____、_____.

ppabpcpapcpbppabpccbap

如果把它看成一个大长方形,那么它的边长为________,面积可表示为_________.

p(a+b+c)(a+b+c)

如果把它看成三个小长方形,那么它们的面积可分别表示为_____、_____、_____.

如果把它看成一个大长方形,那么它的面积可表示为_________.

cbappapcpbp(a+b+c)pa+pb+pcp(a+b+c)pa+pb+pcp(a+b+c)p(a+b+c)pb+pcpa+根据乘法的分配律知识要点单项式乘以多项式的法则单项式与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.

(1)依据是乘法分配律(2)积的项数与多项式的项数相同.注意mbpapc例3

计算:(1)(-4x)·(2x2+3x-1);解:(1)(-4x)·(2x2+3x-1)==-8x3-12x2+4x;(-4x)·(2x2)(-4x)·3x(-4x)·(-1)++典例精析(2)原式单项式与多项式相乘单项式与单项式相乘乘法分配律转化例4

先化简,再求值:3a(2a2-4a+3)-2a2(3a+4),其中a=-2.当a=-2时,解:3a(2a2-4a+3)-2a2(3a+4)=6a3-12a2+9a-6a3-8a2=-20a2+9a.原式=-20×4-9×2=-98.方法总结:在做乘法计算时,一定要注意单项式的符号和多项式中每一项的符号,不要搞错.例5

如果(-3x)2(x2-2nx+2)的展开式中不含x3项,求n的值.方法总结:在整式乘法的混合运算中,要注意运算顺序.注意当要求多项式中不含有哪一项时,则表示这一项的系数为0.解:(-3x)2(x2-2nx+2)=9x2(x2-2nx+2)=9x4-18nx3+18x2.∵展开式中不含x3项,∴n=0.1.计算3a2·2a3的结果是()A.5a5B.6a5C.5a6D.6a6

2.计算(-9a2b3)·8ab2的结果是()A.-72a2b5B.72a2b5C.-72a3b5D.72a3b53.若(ambn)·(a2b)=a5b3那么m+n=()A.8B.7C.6D.5当堂练习BCD(1)4(a-b+1)=___________________;4a-4b+4(2)3x(2x-y2)=___________________;6x2-3xy2(3)(2x-5y+6z)(-3x)=___________________;-6x2+15xy-18xz(4)(-2a2)2(-a-2b+c)=___________________.-4a5-8a4b+4a4c4.计算5.计算:-2x2·(xy+y2)-5x(x2y-xy2).解:原式=(-2x2)·xy+(-2x2)·y2+(-5x)·x2y+(-5x)·(-xy2)=-2x3

y+(-2x2y2)+(-5x3y)+5x2y2=-7x3y+3x2y2.6.解方程:8x(5-x)=34-2x(4x-3).

解得

x=1.解:去括号,得40x-8x2=34-8x2+6x,移项,得40x-6x=34,合并同类项,得34x=34,住宅用地人民广场商业用地3a3a+2b2a-b4a7.如图,一块长方形地用来建造住宅、广场、商厦,求这块地的面积.解:4a[(3a+2b)+(2a-b)]=4a(5a+b)=4a·5a+4a·b=20a2+4ab,答:这块地的面积为20a2+4ab.8.某同学在计算一个多项式乘以-3x2时,算成了加上-3x2,得到的答案是x2-2x+1,那么正确的计算结果是多少?拓展提升解:设这个多项式为A,则∴A=4x2-2x+1.∴A·(-3x2)=(4x2-2x+1)(-3x2)A+(-3x2)=x2-2x+1,=-12x4+6x3-3x2.课堂小结整式乘法单项式×单项式实质上是转化为同底数幂的运算单项式×多项式实质上是转化为单项式×单项式四点注意(1)计算时,要注意符号问题,多项式中每一项都包括它前面的符号,单项式分别与多项式的每一项相乘时,同号相乘得正,异号相乘得负(2)不要出现漏乘现象

(3)运算要有顺序:先乘方,再乘除,最后加减(4)对于混合运算,注意最后应合并同类项14.1.4整式乘法第十四章整式的乘法与因式分解导入新课讲授新课当堂练习课堂小结第2课时多项式与多项式相乘

八年级数学上(RJ)教学课件学习目标1.理解并掌握多项式与多项式的乘法运算法则.(重点)2.能够运用多项式与多项式的乘法运算法则进行计算.(难点)导入新课复习引入1.如何进行单项式与多项式乘法的运算?②再把所得的积相加.①将单项式分别乘以多项式的各项,2.进行单项式与多项式乘法运算时,要注意什么?①不能漏乘:即单项式要乘遍多项式的每一项②去括号时注意符号的确定.讲授新课多项式乘多项式一互动探究问题1

某地区在退耕还林期间,有一块原长m米,宽为a米的长方形林区增长了n米,加宽了b米,请你计算这块林区现在的面积.ambnmanambnbambn你能用不同的形式表示所拼图的面积吗?这块林区现在长为(m+n)米,宽为(a+b)米(m+n)(a+b)m(a+b)+n(a+b)ma+mb+na+nb方法一:方法二:方法三:由于(m+n)(a+b)和(ma+mb+na+nb)表示同一块地的面积,故有:(m+n)(a+b)=ma+mb+na+nb如何进行多项式与多项式相乘的运算?实际上,把(a+b)看成一个整体,有:=ma+mb+na+nb(m+n)(a+b)=m(a+b)+n(a+b)

(m+n)X=mX+nX?若X=a+b,如何计算?多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.知识要点多项式乘以多项式1234(a+b)(m+n)=am1234+an+bm+bn多乘多顺口溜:多乘多,来计算,多项式各项都见面,乘后结果要相加,化简、排列才算完.典例精析例1

计算:(1)(3x+1)(x+2);(2)(x-8y)(x-y);(3)(x+y)(x2-xy+y2).解:(1)原式=3x·x+2·3x+1·x+1×2=3x2+6x+x+2(2)原式=x·x-xy-8xy+8y2结果中有同类项的要合并同类项.=3x2+7x+2;计算时要注意符号问题.=x2-9xy+8y2;

(3)原式=x·x2-x·xy+xy2+x2y-xy2+y·y2=x3-x2y+xy2+x2y-xy2+y3=x3+y3.

需要注意的几个问题:(1)漏乘;(2)符号问题;(3)最后结果应化成最简形式.注意计算时不能漏乘.例2

先化简,再求值:(a-2b)(a2+2ab+4b2)-a(a-5b)(a+3b),其中a=-1,b=1.当a=-1,b=1时,解:原式=a3-8b3-(a2-5ab)(a+3b)=a3-8b3-a3-3a2b+5a2b+15ab2=-8b3+2a2b+15ab2.原式=-8+2-15=-21.

例3

已知ax2+bx+1(a≠0)与3x-2的积不含x2项,也不含x项,求系数a、b的值.解:(ax2+bx+1)(3x-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论