中级微观济学课件尼科尔森ch15_第1页
中级微观济学课件尼科尔森ch15_第2页
中级微观济学课件尼科尔森ch15_第3页
中级微观济学课件尼科尔森ch15_第4页
中级微观济学课件尼科尔森ch15_第5页
已阅读5页,还剩106页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

柯孔林浙江工商大学金融学院1Chapter15GAMETHEORYMODELSOFPRICING柯孔林浙江工商大学金融学院2GameTheoryGametheoryinvolvesthestudyofstrategicsituationsGametheorymodelsattempttoportraycomplexstrategicsituationsinahighlysimplifiedandstylizedsettingabstractfrompersonalandinstitutionaldetailsinordertoarriveatarepresentationofthesituationthatismathematicallytractable柯孔林浙江工商大学金融学院3GameTheoryAllgameshavethreeelementsplayersstrategiespayoffsGamesmaybecooperativeornoncooperative柯孔林浙江工商大学金融学院4PlayersEachdecision-makerinagameiscalledaplayercanbeanindividual,afirm,anentirenationEachplayerhastheabilitytochooseamongasetofpossibleactionsThespecificidentityoftheplayersisirrelevantno“goodguys”or“badguys”柯孔林浙江工商大学金融学院5StrategiesEachcourseofactionopentoaplayeriscalledastrategyStrategiescanbeverysimpleorverycomplexeachisassumedtobewell-definedInnoncooperativegames,playersareuncertainaboutthestrategiesusedbyotherplayers柯孔林浙江工商大学金融学院6PayoffsThefinalreturnstotheplayersattheendofthegamearecalledpayoffsPayoffsareusuallymeasuredintermsofutilitymonetarypayoffsarealsousedItisassumedthatplayerscanrankthepayoffsassociatedwithagame柯孔林浙江工商大学金融学院7NotationWewilldenoteagameGbetweentwoplayers(AandB)byG[SA,SB,UA(a,b),UB(a,b)]whereSA=strategiesavailableforplayerA(a

SA)SB=strategiesavailableforplayerB(b

SB)UA=utilityobtainedbyplayerAwhenparticularstrategiesarechosenUB=utilityobtainedbyplayerBwhenparticularstrategiesarechosen柯孔林浙江工商大学金融学院8NashEquilibriuminGamesAtmarketequilibrium,noparticipanthasanincentivetochangehisbehaviorIngames,apairofstrategies(a*,b*)isdefinedtobeaNashequilibriumifa*isplayerA’sbeststrategywhenplayerBplaysb*,andb*isplayerB’sbeststrategywhenplayerAplaysa*柯孔林浙江工商大学金融学院9NashEquilibriuminGamesApairofstrategies(a*,b*)isdefinedtobeaNashequilibriumifUA(a*,b*)

UA(a’,b*)foralla’

SAUB(a*,b*)

Ub(a*,b’)forallb’

SB柯孔林浙江工商大学金融学院10NashEquilibriuminGamesIfoneoftheplayersrevealstheequilibriumstrategyhewilluse,theotherplayercannotbenefitthisisnotthecasewithnonequilibriumstrategiesNoteverygamehasaNashequilibriumpairofstrategiesSomegamesmayhavemultipleequilibria柯孔林浙江工商大学金融学院11ADormitoryGameSupposethattherearetwostudentswhomustdecidehowloudlytoplaytheirstereosinadormeachmaychoosetoplayitloudly(L)orsoftly(S)柯孔林浙江工商大学金融学院12ADormitoryGameALSAchoosesloud(L)orsoft(S)BBLSLSBmakesasimilarchoice7,55,46,46,3PayoffsareintermsofA’sutilitylevelandB’sutilitylevelNeitherplayerknowstheother’sstrategy柯孔林浙江工商大学金融学院13ADormitoryGameSometimesitismoreconvenienttodescribegamesintabular(“normal”)form柯孔林浙江工商大学金融学院14ADormitoryGameAloud-playstrategyisadominantstrategyforplayerBtheLstrategyprovidesgreaterutilitytoBthandoestheSstrategynomatterwhatstrategyAchoosesPlayerAwillrecognizethatBhassuchadominantstrategyAwillchoosethestrategythatdoesthebestagainstB’schoiceofL柯孔林浙江工商大学金融学院15ADormitoryGameThismeansthatAwillalsochoosetoplaymusicloudlyTheA:L,B:LstrategychoiceobeysthecriterionforaNashequilibriumbecauseLisadominantstrategyforB,itisthebestchoicenomatterwhatAdoesifAknowsthatBwillfollowhisbeststrategy,thenListhebestchoiceforA柯孔林浙江工商大学金融学院16ExistenceofNashEquilibriaANashequilibriumisnotalwayspresentintwo-persongamesThismeansthatonemustexplorethedetailsofeachgamesituationtodeterminewhethersuchanequilibrium(ormultipleequilibria)exists柯孔林浙江工商大学金融学院17NoNashEquilibriaAnystrategyisunstablebecauseitofferstheotherplayersanincentivetoadoptanotherstrategy柯孔林浙江工商大学金融学院18TwoNashEquilibriaBothofthejointvacationsrepresentNashequilibria柯孔林浙江工商大学金融学院19ExistenceofNashEquilibriaTherearecertaintypesoftwo-persongamesinwhichaNashequilibriummustexistgamesinwhichtheparticipantshavealargenumberofstrategiesgamesinwhichthestrategieschosenbyAandBarealternatelevelsofasinglecontinuousvariablegameswhereplayersusemixedstrategies柯孔林浙江工商大学金融学院20ExistenceofNashEquilibriaInagamewhereplayersarepermittedtousemixedstrategies,eachplayermayplaythepurestrategieswithcertain,pre-selectedprobabilitiesplayerAmayflipacointodeterminewhethertoplaymusicloudlyorsoftlythepossibilityofplayingthepurestrategieswithanyprobabilitiesaplayermaychoose,convertsthegameintoonewithaninfinitenumberofmixedstrategies柯孔林浙江工商大学金融学院21ThePrisoners’DilemmaThemostfamoustwo-persongamewithanundesirableNashequilibriume柯孔林浙江工商大学金融学院22ThePrisoners’DilemmaAnironcladagreementbybothprisonersnottoconfesswillgivethemthelowestamountofjointjailtimethissolutionisnotstableThe“confess”strategydominatesforbothAandBthesestrategiesconstituteaNashequilibrium柯孔林浙江工商大学金融学院23TheTragedyoftheCommonThisexampleisusedtosignifytheenvironmentalproblemsofoverusethatoccurwhenscarceresourcesaretreatedas“commonproperty”Assumethattwoherdersaredecidinghowmanyoftheiryakstheyshouldletgrazeonthevillagecommonproblem:thecommonissmallandcanrapidlyeovergrazed柯孔林浙江工商大学金融学院24TheTragedyoftheCommonSupposethattheperyakvalueofgrazingonthecommonisV(YA,YB)=200–(YA+YB)2whereYAandYB=numberofyaksofeachherderNotethatbothVi<0andVii<0anextrayakreducesVandthismarginaleffectincreaseswithadditionalgrazing柯孔林浙江工商大学金融学院25TheTragedyoftheCommonSolvingherderA’svaluemaximizationproblem:MaxYAV=Max[200YA–YA(YA+YB)2]Thefirst-orderconditionis200–2YA2–2YAYB–YA2–2YAYB–YB2=200–3YA2–4YAYB–YB2=0Similarly,forBtheoptimalstrategyis200–3YB2–4YBYA–YA2=0柯孔林浙江工商大学金融学院26TheTragedyoftheCommonForaNashequilibrium,thevaluesforYAandYBmustsolvebothoftheseconditionsUsingthesymmetryconditionYA=YB200=8YA2=8YB2YA=YB=5Eachherderwillobtain500[=5·(200-102)]inreturnGiventhischoice,neitherherderhasanincentivetochangehisbehavior柯孔林浙江工商大学金融学院27TheTragedyoftheCommonTheNashequilibriumisnotthebestuseofthecommonYA=YB=4providesgreaterreturntoeachherder[4·(200–82)=544]ButYA=YB=4isnotastableequilibriumifAannouncesthatYA=4,BwillhaveanincentivetoincreaseYBthereisanincentivetocheat柯孔林浙江工商大学金融学院28CooperationandRepetitionCooperationamongplayerscanresultinesthatarepreferredtotheNashebybothplayersthecooperativeeisunstablebecauseitisnotaNashequilibriumRepeatedplaymayfostercooperation柯孔林浙江工商大学金融学院29ATwo-PeriodDormitoryGameLet’sassumethatAchooseshisdecibellevelfirstandthenBmakeshischoiceIneffect,thatmeansthatthegamehaseatwo-periodgameB’sstrategicchoicesmusttakeintoaccounttheinformationavailableatthestartofperiodtwo柯孔林浙江工商大学金融学院30ATwo-PeriodDormitoryGameALSAchoosesloud(L)orsoft(S)BBLSLSBmakesasimilarchoiceknowingA’schoice7,55,46,46,3Thus,weshouldputB’sstrategiesinaformthattakestheinformationonA’schoiceintoaccount柯孔林浙江工商大学金融学院31ATwo-PeriodDormitoryGameB’sStrategiesL,LL,SS,LS,SA’sStrategiesL7,57,55,45,4S6,46,36,46,3EachstrategyisstatedasapairofactionsshowingwhatBwilldodependingonA’sactions柯孔林浙江工商大学金融学院32ATwo-PeriodDormitoryGameB’sStrategiesL,LL,SS,LS,SA’sStrategiesL7,57,55,45,4S6,46,36,46,3Thereare3NashequilibriainthisgameA:L,B:(L,L)A:L,B:(L,S)A:S,B:(S,L)柯孔林浙江工商大学金融学院33ATwo-PeriodDormitoryGameB’sStrategiesL,LL,SS,LS,SA’sStrategiesL7,57,55,45,4S6,46,36,46,3A:L,B:(L,S)andA:S,B:(S,L)areimplausibleeachincorporatesanoncrediblethreatonthepartofB柯孔林浙江工商大学金融学院34ATwo-PeriodDormitoryGameThus,thegameisreducedtotheoriginalpayoffmatrixwhere(L,L)isadominantstrategyforBAwillrecognizethisandwillalwayschooseLThisisasubgameperfectequilibriumaNashequilibriuminwhichthestrategychoicesofeachplayerdonotinvolvenoncrediblethreats柯孔林浙江工商大学金融学院35SubgamePerfectEquilibriumA“subgame”istheportionofalargergamethatbeginsatonedecisionnodeandincludesallfutureactionsstemmingfromthatnodeToqualifytobeasubgameperfectequilibrium,astrategymustbeaNashequilibriumineachsubgameofalargergame柯孔林浙江工商大学金融学院36RepeatedGamesManyeconomicsituationscanbemodeledasgamesthatareplayedrepeatedlyconsumers’regularpurchasesfromaparticularretailerfirms’day-to-daycompetitionforcustomersworkers’attemptstooutwittheirsupervisors柯孔林浙江工商大学金融学院37RepeatedGamesAnimportantaspectofarepeatedgameistheexpandedstrategysetsthateavailabletotheplayersopensthewayforcrediblethreatsandsubgameperfection柯孔林浙江工商大学金融学院38RepeatedGamesThenumberofrepetitionsisalsoimportantingameswithafixed,finitenumberofrepetitions,thereislittleroomforthedevelopmentofinnovativestrategiesgamesthatareplayedaninfinitenumberoftimesofferamuchwiderarrayofoptions柯孔林浙江工商大学金融学院39Prisoners’DilemmaFiniteGameB’sStrategiesLRA’sStrategiesU1,13,0D0,32,2Ifthegamewasplayedonlyonce,theNashequilibriumA:U,B:Lwouldbetheexpectede柯孔林浙江工商大学金融学院40Prisoners’DilemmaFiniteGameB’sStrategiesLRA’sStrategiesU1,13,0D0,32,2ThiseisinferiortoA:D,B:Rforeachplayer柯孔林浙江工商大学金融学院41Prisoners’DilemmaFiniteGameSupposethisgameistoberepeatedlyplayedforafinitenumberofperiods(T)AnyexpandedstrategyinwhichApromisestoplayDinthefinalperiodisnotcrediblewhenTarrives,AwillchoosestrategyUThesamelogicappliestoplayerB柯孔林浙江工商大学金融学院42Prisoners’DilemmaFiniteGameAnysubgameperfectequilibriumforthisgamecanonlyconsistoftheNashequilibriumstrategiesinthefinalroundA:U,B:LThelogicthatappliestoperiodTalsoappliestoperiodT-1TheonlysubgameperfectequilibriuminthisfinitegameistorequiretheNashequilibriumineveryround柯孔林浙江工商大学金融学院43GamewithInfiniteRepetitionsInthiscase,eachplayercanannouncea“triggerstrategy”promisetoplaythecooperativestrategyaslongastheotherplayerdoeswhenoneplayerdeviatesfromthepattern,thegamerevertstotherepeatingsingle-periodNashequilibrium柯孔林浙江工商大学金融学院44GamewithInfiniteRepetitionsWhetherthetwintriggerstrategyrepresentsasubgameperfectequilibriumdependsonwhetherthepromisetoplaycooperativelyiscredibleSupposethatAannouncesthathewillcontinuetoplaythetriggerstrategybyplayingcooperativelyinperiodK柯孔林浙江工商大学金融学院45GamewithInfiniteRepetitionsIfBdecidestoplaycooperatively,payoffsof2canbeexpectedtocontinueindefinitelyIfBdecidestocheat,thepayoffinperiodKwillbe3,butwillfallto1inallfutureperiodstheNashequilibriumwillreassertitself柯孔林浙江工商大学金融学院46GamewithInfiniteRepetitionsIf

isplayerB’sdiscountrate,thepresentvalueofcontinuedcooperationis2+2+22+…=2/(1-)Thepayofffromcheatingis3+1+21+…=3+1/(1-)Continuedcooperationwillbecredibleif2/(1-)>3+1/(1-)>½柯孔林浙江工商大学金融学院47TheTragedyoftheCommonRevisitedTheovergrazingofyaksonthevillagecommonmaynotpersistinaninfinitelyrepeatedgameAssumethateachherderhasonlytwostrategiesavailablebringing4or5yakstothecommonTheNashequilibrium(A:5,B:5)isinferiortothecooperativee(A:4,B:4)柯孔林浙江工商大学金融学院48TheTragedyoftheCommonRevisitedWithaninfinitenumberofrepetitions,bothplayerswouldfinditattractivetoadoptcooperativetriggerstrategiesif544/(1-)>595+500(1-)>551/595=0.93柯孔林浙江工商大学金融学院49PricinginStaticGamesSupposethereareonlytwofirms(AandB)producingthesamegoodataconstantmarginalcost(c)thestrategiesforeachfirmconsistofchoosingprices(PA

andPB)subjectonlytotheconditionthatthefirm’spricemustexceedcPayoffsinthegamewillbedeterminedbydemandconditions柯孔林浙江工商大学金融学院50PricinginStaticGamesBecauseoutputishomogeneousandmarginalcostsareconstant,thefirmwiththelowerpricewillgaintheentiremarketIfPA=PB,wewillassumethatthefirmswillsharethemarketequally柯孔林浙江工商大学金融学院51PricinginStaticGamesInthismodel,theonlyNashequilibriumisPA=PB=ciffirmAchoosesapricegreaterthanc,theprofit-maximizingresponseforfirmBistochooseapriceslightlylowerthanPAandcornertheentiremarketbutB’sprice(ifitexceedsc)cannotbeaNashequilibriumbecauseitprovidesfirmAwithincentiveforfurtherpricecutting柯孔林浙江工商大学金融学院52PricinginStaticGamesTherefore,onlybychoosingPA=PB=cwillthetwofirmshaveachievedaNashequilibriumweendupwithacompetitivesolutioneventhoughthereareonlytwofirmsThispricingstrategyissometimesreferredtoasaBertrandequilibrium柯孔林浙江工商大学金融学院53PricinginStaticGamesTheBertrandresultdependscruciallyontheassumptionsunderlyingthemodeliffirmsdonothaveequalcostsorifthegoodsproducedbythetwofirmsarenotperfectsubstitutes,thecompetitiveresultnolongerholds柯孔林浙江工商大学金融学院54PricinginStaticGamesOtherduopolymodelsthatdepartfromtheBertrandresulttreatpricecompetitionasonlythefinalstageofatwo-stagegameinwhichthefirststageinvolvesvarioustypesofentryorinvestmentconsiderationsforthefirms柯孔林浙江工商大学金融学院55PricinginStaticGamesConsiderthecaseoftwoownersofnaturalspringswhoaredecidinghowmuchwatertosupplyAssumethateachfirmmustchooseacertaincapacityoutputlevelmarginalcostsareconstantuptothatlevelandinfinitethereafter柯孔林浙江工商大学金融学院56PricinginStaticGamesAtwo-stagegamewherefirmschoosecapacityfirst(andthenprice)isformallyidenticaltotheCournotanalysisthequantitieschosenintheCournotequilibriumrepresentaNashequilibriumeachfirmcorrectlyperceiveswhattheother’soutputwillbeoncethecapacitydecisionsaremade,theonlypricethatcanprevailisthatforwhichquantitydemandedisequaltototalcapacity柯孔林浙江工商大学金融学院57PricinginStaticGamesSupposethatcapacitiesaregivenbyqA’andqB’andthatP’=D

-1(qA’+qB’)whereD-1istheinversedemandfunctionAsituationinwhichPA=PB<P’isnotaNashequilibriumtotalquantitydemanded>totalcapacitysoonefirmcouldincreaseitsprofitsbyraisingitspriceandstillsellitscapacity柯孔林浙江工商大学金融学院58PricinginStaticGamesLikewise,asituationinwhichPA=PB>P’isnotaNashequilibriumtotalquantitydemanded<totalcapacitysoatleastonefirmissellinglessthanitscapacitybycuttingprice,thisfirmcouldincreaseitsprofitsbytakingallpossiblesalesuptoitscapacitytheotherfirmwouldenduploweringitspriceaswell柯孔林浙江工商大学金融学院59PricinginStaticGamesTheonlyNashequilibriumthatwillprevailisPA=PB=P’thispricewillfallshortofthemonopolypricebutwillexceedmarginalcostTheresultsofthistwo-stagegameareindistinguishablefromtheCournotmodel柯孔林浙江工商大学金融学院60PricinginStaticGamesTheBertrandmodelpredictscompetitiveesinaduopolysituationTheCournotmodelpredictsmonopoly-likeinefficienciesThissuggeststhatactualbehaviorinduopolymarketsmayexhibitawidevarietyofesdependingonthewayinwhichcompetitionoccurs柯孔林浙江工商大学金融学院61RepeatedGamesandTacitCollusionPlayersininfinitelyrepeatedgamesmaybeabletoadoptsubgame-perfectNashequilibriumstrategiesthatyieldbetteresthansimplyrepeatingalessfavorableNashequilibriumindefinitelydothefirmsinaduopolyhavetoenduretheBertrandequilibriumforever?cantheyachievemoreprofitableesthroughtacitcollusion?柯孔林浙江工商大学金融学院62RepeatedGamesandTacitCollusionWithanyfinitenumberofreplications,theBertrandresultwillremainunchangedanystrategyinwhichfirmAchoosesPA>cinperiodT(thefinalperiod)offersBtheoptionofchoosingPA>PB>cA’sthreattochargePA

inperiodTisnoncredibleasimilarargumentappliestoanyperiodpriortoT柯孔林浙江工商大学金融学院63RepeatedGamesandTacitCollusionIfthepricinggameisrepeatedoverinfinitelymanyperiods,twin“trigger”strategiesefeasibleeachfirmsetsitspriceequaltothemonopolyprice(PM)providingtheotherfirmdidthesameinthepriorperiodiftheotherfirm“cheated”inthepriorperiod,thefirmwilloptforcompetitivepricinginallfutureperiods柯孔林浙江工商大学金融学院64RepeatedGamesandTacitCollusionSupposethat,afterthepricinggamehasbeenproceedingforseveralperiods,firmBisconsideringcheatingbychoosingPB<PA

=PMitcanobtainalmostallofthesingleperiodmonopolyprofits(

M)柯孔林浙江工商大学金融学院65RepeatedGamesandTacitCollusionIffirmBcontinuestocolludetacitlywithA,itwillearnitsshareoftheprofitstream(M+M+2

M+…+n

M+…)/2=(M/2)[1/(1-)]

whereisthediscountfactorappliedtofutureprofits柯孔林浙江工商大学金融学院66RepeatedGamesandTacitCollusionCheatingwillbeunprofitableif

M<(M/2)[1/(1-)]

orif>1/2Providingthatfirmsarenottooimpatient,thetriggerstrategiesrepresentasubgameperfectNashequilibriumoftacitcollusion柯孔林浙江工商大学金融学院67TacitCollusionSupposeonlytwofirmsproducesteelbarsforjailhousewindowsBarsareproducedataconstantACandMCof$10andthedemandforbarsisQ=5,000-100PUnderBertrandcompetition,eachfirmwillchargeapriceof$10andatotalof4,000barswillbesold柯孔林浙江工商大学金融学院68TacitCollusionThemonopolypriceinthismarketis$30eachfirmhasanincentivetocolludetotalmonopolyprofitswillbe$40,000eachperiod(eachfirmwillreceive$20,000)anyonefirmwillconsideranext-periodpricecutonlyif$40,000>$20,000(1/1-)willhavetobefairlyhighforthistooccur柯孔林浙江工商大学金融学院69TacitCollusionTheviabilityofatriggerpricestrategymaydependonthenumberoffirmssupposethereare8producerstotalmonopolyprofitswillbe$40,000eachperiod(eachfirmwillreceive$5,000)anyonefirmwillconsideranext-periodpricecutif$40,000>$5,000(1/1-)thisislikelyatreasonablelevelsof柯孔林浙江工商大学金融学院70GeneralizationsandLimitationsTheviabilityoftacitcollusioningametheorymodelsisverysensitivetotheassumptionsmadeWeassumedthat:firmBcaneasilydetectthatfirmAhascheatedfirmBrespondstocheatingbyadoptingaharshresponsethatnotonlypunishesA,butalsocondemnsBtozeroprofitsforever柯孔林浙江工商大学金融学院71GeneralizationsandLimitationsInmoregeneralmodelsoftacitcollusion,theseassumptionscanberelaxeddifficultyinmonitoringotherfirm’sbehaviorotherformsofpunishmentdifferentiatedproducts柯孔林浙江工商大学金融学院72Entry,Exit,andStrategyInpreviousmodels,wehaveassumedthatentryandexitaredrivenbytherelationshipbetweentheprevailingmarketpriceandafirm’saveragecostTheentryandexitissuecaneconsiderablymorecomplex柯孔林浙江工商大学金融学院73Entry,Exit,andStrategyAfirmwishingtoenterorexitamarketmustmakesomeconjectureabouthowitsactionswillaffectthefuturemarketpricethisrequiresthefirmtoconsiderwhatitsrivalswilldothismayinvolveanumberofstrategicploysespeciallywhenafirm’sinformationaboutitsrivalsisimperfect柯孔林浙江工商大学金融学院74SunkCostsandCommitmentManygametheoreticmodelsofentrystresstheimportanceofafirm’scommitmenttoaspecificmarketlargecapitalinvestmentsthatcannotbeshiftedtoanothermarketwillleadtoalargelevelofcommitmentonthepartofthefirm柯孔林浙江工商大学金融学院75SunkCostsandCommitmentSunkcostsareone-timeinvestmentsthatmustbemadetoenteramarkettheseallowthefirmtoproduceinthemarketbuthavenoresidualvalueifthefirmleavesthemarketcouldincludeexpendituresonuniquetypesofequipmentorjob-specifictrainingofworkers柯孔林浙江工商大学金融学院76First-MoverAdvantageinCournot’sNaturalSpringsUndertheStackelbergversionofthismodel,eachfirmhastwopossiblestrategiesbealeader(qi=60)beafollower(qi=30)柯孔林浙江工商大学金融学院77First-MoverAdvantageinCournot’sNaturalSpringsThepayoffsforthesetwostrategiesare:柯孔林浙江工商大学金融学院78First-MoverAdvantageinCournot’sNaturalSpringsTheleader-leaderstrategyforeachfirmprovestobedisastrousitisnotaNashequilibriumiffirmAknowsthatfirmBwilladoptaleaderstrategy,itsbestmoveistobeafollowerAfollower-followerchoiceisprofitableforbothfirmsthischoiceisunstablebecauseitgiveseachfirmanincentivetocheat柯孔林浙江工商大学金融学院79First-MoverAdvantageinCournot’sNaturalSpringsWithsimultaneousmoves,eitheroftheleader-followerpairsrepresentsaNashequilibriumButifonefirmhastheopportunitytomovefirst,itcandictatewhichofthetwoequilibriaischosenthisisthefirst-moveradvantage柯孔林浙江工商大学金融学院80EntryDeterrenceInsomecases,first-moveradvantagesmaybelargeenoughtodeterallentrybyrivalshowever,itmaynotalwaysbeinthefirm’sbestinteresttocreatethatlargeacapacity柯孔林浙江工商大学金融学院81EntryDeterrenceWitheconomiesofscale,thepossibilityforprofitableentrydeterrenceisincreasedifthefirstmovercanadoptalarge-enoughscaleofoperation,itmaybeabletolimitthescaleofapotentialentrantthepotentialentrantwillexperiencesuchhighaveragecoststhattherewouldbenoadvantagetoenteringthemarket柯孔林浙江工商大学金融学院82EntryDeterrenceinCournot’sNaturalSpringAssumethateachspringownermustpayafixedcostofoperations($784)TheNashequilibriumleader-followerstrategiesremainprofitableforbothfirmsiffirmAmovesfirstandadoptstheleader’srole,B’sprofitsarerelativelysmall($116)AcouldpushBoutofthemarketbybeingabitmoreaggressive柯孔林浙江工商大学金融学院83EntryDeterrenceinCournot’sNaturalSpringSinceB’sreactionfunctionisunaffectedbythefixedcosts,firmAknowsthatqB=(120-qA)/2andmarketpriceisgivenbyP=120-qA-qBFirmAknowsthatB’sprofitsare

B=PqB-784柯孔林浙江工商大学金融学院84EntryDeterrenceinCournot’sNaturalSpringWhenBisafollower,itsprofitsdependonlyonqATherefore,FirmAcanensurenonpositiveprofitsforfirmBbychoosingqA

64FirmAwillearnprofitsof$2,800柯孔林浙江工商大学金融学院85LimitPricingAretheresituationswhereamonopolymightpurposelychoosealow(“limit”)pricepolicytodeterentryintoitsmarket?Inmostsimplesituations,thelimitpricingstrategydoesnotyieldmaximumprofitsandisnotsustainableovertimechoosingPL<PMwillonlydeterentryifPLislowerthantheACofanypotentialentrant柯孔林浙江工商大学金融学院86LimitPricingIfthemonopolyandthepotentialentranthavethesamecosts,theonlylimitpricesustainableisPL=ACdefeatsthepurposeofbeingamonopolybecause=0Thus,thebasicmonopolymodelofferslittleroomforentrydeterrencethroughpricingbehavior柯孔林浙江工商大学金融学院87LimitPricingandpleteInformationBelievablemodelsoflimitpricingmustdepartfromtraditionalassumptionsThemostimportantsetofsuchmodelsinvolvespleteinformationifanincumbentmonopolistknowsmoreaboutthemarketsituationthanapotentialentrant,themonopolistmaybeabletodeterentry柯孔林浙江工商大学金融学院88LimitPricingandpleteInformationSupposethatanincumbentmonopolistmayhaveeither“high”or“low”productioncostsasaresultofpastdecisionsTheprofitabilityoffirmB’sentryintothemarketdependsonA’scostsWecanuseatreediagramtoshowB’sdilemma柯孔林浙江工商大学金融学院89LimitPricingandpleteInformation1,34,03,-16,0HighCostLowCostEntryEntryNoEntryNoEntry

ABBTheprofitabilityofentryforFirmBdependsonFirmA’scostswhichareunknowntoB柯孔林浙江工商大学金融学院90LimitPricingandpleteInformationFirmBcouldusewhateverinformationithastodevelopasubjectiveprobabilityofA’scoststructureIfBassumesthatthereisaprobabilityof

thatAhashighcostand(1-

)thatithaslowcost,entrywillyieldpositiveexpectedprofitsifE(B)=(3)+(1-)(-1)>0>¼柯孔林浙江工商大学金融学院91LimitPricingandpleteInformationRegardlessofitstruecosts,firmAisbetteroffifBdoesnotenterOnewaytoensurethisisforAtoconvinceBthat

<¼FirmAmaychoosealow-pricestrategythentosignalfirmBthatitscostsarelowthisprovidesapossiblerationaleforlimitpricing柯孔林浙江工商大学金融学院92PredatoryPricingThestructureofmanymodelsofpredatorybehaviorissimilartothatusedinlimitpricingmodelsstresspleteinformationAfirmwishestoencourageitsrivaltoexitthemarketittakesactionstoaffectitsrival’sviewsofthefutureprofitabilityofremaininginthemarket柯孔林浙江工商大学金融学院93GamesofpleteInformationEachplayerinagamemaybeoneofanumberofpossibletypes(tAandtB)playertypescanvaryalongseveraldimensionsWewillassumethatourplayertypeshavedifferingpotentialpayofffunctionseachplayerknowshisownpayoffbutdoesnotknowhisopponent’spayoffwithcertainty柯孔林浙江工商大学金融学院94GamesofpleteInformationEachplayer’sconjecturesabouttheopponent’splayertypearerepresentedbybelieffunctions[fA(tB)]consistoftheplayer’sprobabilityestimatesofthelikelihoodthathisopponentisofvarioustypesGamesofpleteinformationaresometimesreferredtoasBayesiangames柯孔林浙江

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论