江西省新余市2024届数学八上期末监测试题含解析_第1页
江西省新余市2024届数学八上期末监测试题含解析_第2页
江西省新余市2024届数学八上期末监测试题含解析_第3页
江西省新余市2024届数学八上期末监测试题含解析_第4页
江西省新余市2024届数学八上期末监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省新余市2024届数学八上期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=2,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于2,则α=()A.30° B.45° C.60° D.15°2.下列各式从左到右的变形正确的是()A.= B.=C.=- D.=3.某工厂计划生产1500个零件,但是在实际生产时,……,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件x个,可得方程,则题目中用“……”表示的条件应是()A.每天比原计划多生产5个,结果延期10天完成B.每天比原计划多生产5个,结果提前10天完成C.每天比原计划少生产5个,结果延期10天完成D.每天比原计划少生产5个,结果提前10天完成4.已知关于x、y的方程组,解是,则2m+n的值为()A.﹣6 B.2 C.1 D.05.下列命题是真命题的是()A.直角三角形中两个锐角互补 B.相等的角是对顶角C.同旁内角互补,两直线平行 D.若,则6.点A(-2,5)关于x轴对称的点的坐标是()A.(2,5) B.(-2,-5) C.(2,-5) D.(5,-2)7.已知一组数据:92,94,98,91,95的中位数为a,方差为b,则a+b=()A.98 B.99 C.100 D.1028.如图,是△的中线,,分别是和延长线上点,且=,连接,.①△和△面积相等;②∠=∠;③△≌△;④∥;⑤=.上述结论中,正确的个数有()A.2个 B.3个 C.4个 D.5个9.下列各数是无理数的是()A.3.14 B.-π C. D.10.若,则的值是A. B. C. D.11.如图,∠ABC=∠ACB,AD、BD分别平分△ABC的外角∠EAC、内角∠ABC,以下结论:①AD∥BC;②∠ACB=2∠ADB;③BD⊥AC;④AC=AD.其中正确的结论有()A.①② B.①②④ C.①②③ D.①③④12.如图所示,将矩形纸片折叠,使点与点重合,点落在点处,折痕为,若,那么的度数为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,∠AOB=30°,点P是它内部一点,OP=2,如果点Q、点R分别是OA、OB上的两个动点,那么PQ+QR+RP的最小值是__________.14.计算的结果为______.15.光的速度约为3×105km/s,太阳系以外距离地球最近的一颗恒星(比邻星)发出的光需要4年的时间才能到达地球.若一年以3×107s计算,则这颗恒星到地球的距离是_______km.16.已知、满足,,则的值等于_______.17.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为__________.18.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数方差根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛,应该选择__________.三、解答题(共78分)19.(8分)在一次捐款活动中,学校团支书想了解本校学生的捐款情况,随机抽取了50名学生的捐款进行了统计,并绘制成如图所示的统计图.(1)这50名同学捐款的众数为元,中位数为元;(2)如果捐款的学生有300人,估计这次捐款有多少元?20.(8分)给出下列等式:21﹣20=20,22﹣21=21,23﹣22=22,24﹣23=23,……(1)探索上面式子的规律,试写出第n个等式,并证明其成立.(2)运用上述规律计算20+21+22+…+22017+22018值.21.(8分)解方程:(1)计算:(2)计算:(3)解方程组:22.(10分)如图某船在海上航行,在A处观测到灯塔B在北偏东60°方向上,该船以每小时15海里的速度向东航行到达C处,观测到灯塔B在北偏东30°方向上,继续向东航行到D处,观测到灯塔B在北偏西30°方向上,当该船到达D处时恰与灯塔B相距60海里.(1)判断BCD的形状;(2)求该船从A处航行至D处所用的时间.23.(10分)如图,平面直角坐标系中,的顶点都在网格点上,其中点坐标为.(1)填空:点的坐标是__________,点的坐标是________;(2)将先向左平移3个单位长度,再向上平移1个单位长度,画出平移后的;(3)求的面积.24.(10分)如图,B地在A地的正东方向,两地相距28km.A,B两地之间有一条东北走向的高速公路,且A,B两地到这条高速公路的距离相等.上午8:00测得一辆在高速公路上行驶的汽车位于A地的正南方向P处,至上午8:20,B地发现该车在它的西北方向Q处,该段高速公路限速为110km/h.问:该车是否超速行驶?25.(12分)某商场计划购进A、B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价/(元/盏)售价/(元/盏)A型3045B型5070(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯进货数量的4倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?26.因式分解:(1)a3﹣4a(2)m3n﹣2m2n+mn

参考答案一、选择题(每题4分,共48分)1、A【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点E、F在CD上时,△PEF的周长为PE+EF+FP=CD,此时周长最小,根据CD=2可求出α的度数.【题目详解】如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F.此时,△PEF的周长最小.连接OC,OD,PE,PF.∵点P与点C关于OA对称,∴OA垂直平分PC,∴∠COA=∠AOP,PE=CE,OC=OP,同理,可得∠DOB=∠BOP,PF=DF,OD=OP.∴∠COA+∠DOB=∠AOP+∠BOP=∠AOB=α,OC=OD=OP=2,∴∠COD=2α.又∵△PEF的周长=PE+EF+FP=CE+EF+FD=CD=2,∴OC=OD=CD=2,∴△COD是等边三角形,∴2α=60°,∴α=30°.故选A.【题目点拨】本题找到点E和F的位置是解题的关键.要使△PEF的周长最小,通常是把三边的和转化为一条线段,运用三角形三边关系解决.2、D【解题分析】解:A.根据分式的基本性质应该分子和分母都除以b,故本选项错误;B.根据分式的基本性质,分子和分母都加上2不相等,故本选项错误;C.,故本选项错误;D.∵a−2≠0,∴,故本选项正确;故选D.3、B【解题分析】试题解析:实际每天生产零件x个,那么表示原计划每天生产的零件个数,实际上每天比原计划多生产5个,表示原计划用的时间-实际用的时间=10天,说明实际上每天比原计划多生产5个,提前10天完成任务.故选B.4、A【解题分析】把代入方程组得到关于m,n的方程组求得m,n的值,代入代数式即可得到结论.【题目详解】把代入方程得:解得:,则2m+n=2×(﹣2)+(﹣2)=﹣1.故选A.【题目点拨】本题考查了解二元一次方程组,二元一次方程组的解,代数式的求值,正确的解方程组是解题的关键.5、C【分析】分别利用直角三角形的性质、对顶角和平行线的判定方法以及绝对值的性质分析得出答案.【题目详解】解:A、直角三角形中两个锐角互余,故此选项错误;

B、相等的角不一定是对顶角,故此选项错误;

C、同旁内角互补,两直线平行,正确;

D、若|a|=|b|,则a=±b,故此选项错误;

故选C.【题目点拨】此题主要考查了命题与定理,正确把握相关性质是解题关键.6、B【解题分析】分析:关于x轴对称的两点的横坐标相等,纵坐标互为相反数.详解:根据题意可得:点A(-2,5)关于x轴对称的点的坐标为(-2,-5),故选B.点睛:本题主要考查的是关于x轴对称的点的性质,属于基础题型.关于x轴对称的两个点横坐标相等,纵坐标互为相反数;关于y轴对称的两个点纵坐标相等,横坐标互为相反数;关于原点对称的两个点横坐标和纵坐标都互为相反数.7、C【分析】分别根据中位数和方差的定义求出a、b,然后即可求出答案.【题目详解】数据:92,94,98,91,95从小到大排列为91,92,94,95,98,处于中间位置的数是94,则该组数据的中位数是94,即a=94,该组数据的平均数为×(92+94+98+91+95)=94,其方差为×[(92﹣94)2+(94﹣94)2+(98﹣94)2+(91﹣94)2+(95﹣94)2]=6,所以b=6,所以a+b=94+6=100,故选C.【题目点拨】本题考查了中位数和方差,熟练掌握中位数和方差的定义以及求解方法是解题的关键.8、B【分析】①△ABD和△ACD是等底同高的两个三角形,其面积相等,故①正确;②若AB≠AC,则AD不是∠BAC的平分线,故②错误;③由全等三角形的判定定理SAS可证得结论,故③正确;④、⑤由③中的全等三角形的性质得到.【题目详解】解:①∵AD是△ABC的中线,∴BD=CD,∴△ABD和△ACD面积相等,故①正确;②若在△ABC中,AB≠AC时,AD不是∠BAC的平分线,即∠BAD≠∠CAD,故②错误;③∵AD是△ABC的中线,∴BD=CD,在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),故③正确;④∵△BDF≌△CDE,∴∠CED=∠BFD,∴BF∥CE,故④正确;⑤∵△BDF≌△CDE,∴CE=BF,∴只有当AE=BF时,CE=AE,故⑤错误,综上所述,正确的结论是:①③④,共有3个.故选:B.【题目点拨】本题考查了三角形中线的性质,等腰三角形的性质,全等三角形的判定和性质,解题的关键是证明△BDF≌△CDE.9、B【分析】根据无理数的定义判断.【题目详解】A、3.14是有限小数,是有理数,故不符合题意;B、-π是无限不循环小数,是无理数,故符合题意;C、是无限循环小数,是有理数,故不符合题意;D、=10,是有理数,故不符合题意;故选B.【题目点拨】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.10、C【解题分析】∵,∴b=a,c=2a,则原式.故选C.11、B【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质进而解答即可.【题目详解】解:∵AD平分∠EAC,

∴∠EAC=2∠EAD,

∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,

∴∠EAD=∠ABC,

∴AD∥BC,∴①正确;

∵AD∥BC,

∴∠ADB=∠DBC,

∵BD平分∠ABC,∠ABC=∠ACB,

∴∠ABC=∠ACB=2∠DBC,

∴∠ACB=2∠ADB,∴②正确;

∵BD平分∠ABC,∠ABC=∠ACB,

∵∠ABC+∠ACB+∠BAC=180°,

当∠BAC=∠C时,才有∠ABD+∠BAC=90°,故③错误;

∵∠ADB=∠ABD,

∴AD=AB,

∴AD=AC,故④正确;

故选:B.【题目点拨】本题考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考察学生的推理能力,有一定的难度.12、D【分析】由折叠的性质知:∠EBC′、∠BC′F都是直角,∠BEF=∠DEF,因此BE∥C′F,那么∠EFC′和∠BEF互补,这样可得出∠BEF的度数,进而可求得∠AEB的度数,则∠ABE可在Rt△ABE中求得.【题目详解】解:由折叠的性质知,∠BEF=∠DEF,∠EBC′、∠BC′F都是直角,∴BE∥C′F,∴∠EFC′+∠BEF=180°,又∵∠EFC′=122°,∴∠BEF=∠DEF=58°,∴∠AEB=180°-∠BEF-∠DEF=64°,在Rt△ABE中,∠ABE=90°-∠AEB=26°.故选D.【题目点拨】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题(每题4分,共24分)13、1【分析】先作点P关于OA,OB的对称点P′,P″,连接P′P″,由轴对称确定最短路线问题,P′P″分别与OA,OB的交点即为Q,R,△PQR周长的最小值=P′P″,由轴对称的性质,可证∠POA=∠P′OA,∠POB=∠P″OB,OP′=OP″=OP=1,∠P′OP″=1∠AOB=1×30°=60°,继而可得△OP′P″是等边三角形,即PP′=OP′=1.【题目详解】作点P关于OA,OB的对称点P′,P″,连接P′P″,由轴对称确定最短路线问题,P′P″分别与OA,OB的交点即为Q,R,△PQR周长的最小值=P′P″,由轴对称的性质,∠POA=∠P′OA,∠POB=∠P″OB,OP′=OP″=OP=1,所以,∠P′OP″=1∠AOB=1×30°=60°,所以,△OP′P″是等边三角形,所以,PP′=OP′=1.故答案为:1.【题目点拨】本题主要考查轴对称和等边三角形的判定,解决本题的关键是要熟练掌握轴对称性质和等边三角形的判定.14、【分析】根据多项式除以单项式的方法,先把这个多项式的每一项分别除以单项式,再把所得的商相加即可.【题目详解】解:=.故答案为:.【题目点拨】本题考查整式的除法,多项式除以单项式实质就是转化为单项式除以单项式,多项式除以单项式的结果仍是一个多项式.15、3.6×1013【解题分析】根据题意列出算式,再根据单项式的运算法则进行计算.【题目详解】依题意,这颗恒星到地球的距离为4×3×107×3×105,=(4×3×3)×(107×105),=3.6×1013km.故答案为:3.6×1013.【题目点拨】本题考查了根据实际问题列算式的能力,科学记数法相乘可以运用单项式相乘的法则进行计算.16、或.【分析】分两种情况:当时,由,,构造一元二次方程,则其两根为,利用根与系数的关系可得答案,当时,代入代数式即可得答案,【题目详解】解:时,、满足,,、是关于的方程的两根,,,则当时,原式的值等于或.故答案为:或.【题目点拨】本题考查的是利用一元二次方程的根与系数的关系求代数式的值,掌握分类讨论,一元二次方程的构造是解题的关键.17、60°或120°【分析】分别从△ABC是锐角三角形与钝角三角形去分析求解即可求得答案.【题目详解】解:如图(1),∵AB=AC,BD⊥AC,∴∠ADB=90°,∵∠ABD=30°,∴∠A=60°;如图(2),∵AB=AC,BD⊥AC,∴∠BDC=90°,∵∠ABD=30°,∴∠BAD=60°,∴∠BAC=120°;综上所述,它的顶角度数为:60°或120°.【题目点拨】此题考查了等腰三角形的性质.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.18、丙【解题分析】由表中数据可知,丙的平均成绩和甲的平均成绩最高,而丙的方差也是最小的,成绩最稳定,所以应该选择:丙.故答案为丙.三、解答题(共78分)19、(1)15,15;(2)估计这次捐款有3900元.【解题分析】(1)根据众数和中位数的定义求解;(2)先计算出样本的平均数,然后利用样本估计总体,用样本平均数乘以300即可.【题目详解】解:(1)这50名同学捐款的众数为15元,第25个数和第26个数都是15元,所以中位数为15元;故答案为15,15;(2)样本的平均数=150(5×8+10×14+15×20+20×6+25×2)=13(元)300×13=3900,所以估计这次捐款有3900元.故答案为:(1)15,15;(2)估计这次捐款有3900元.【题目点拨】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.20、(1)2n﹣2n﹣1=2n﹣1,证明详见解析;(2)22019﹣1.【分析】(1)根据题目中的式子,可以写出第n个等式,并加以证明;(2)根据(1)中的结果,将所求式子变形,即可求得所求式子的值.【题目详解】(1)第n个等式是:2n﹣2n﹣1=2n﹣1,证明:∵2n﹣2n﹣1=2×2n﹣1﹣2n﹣1=(2﹣1)×2n﹣1=1×2n﹣1=2n﹣1,∴2n﹣2n﹣1=2n﹣1成立;(2)20+21+22+…+22017+22018=(21﹣20)+(22﹣21)+(23﹣22)+…+(22019﹣22018)=21﹣20+22﹣21+23﹣22+…+22019﹣22018=﹣20+22019=22019﹣1.【题目点拨】本题考查数字的变化类,解答本题的关键是明确题意,发现式子的变化特点,求出所求式子的值.21、(1);(2);(3).【分析】(1)利用二次根式的性质和二次根式的乘除法化简,将所得的结果相加减即可;(2)利用平方差公式和和二次根式的乘除法化简,将所得的结果相加减即可;(3)利用加减消元法即可求解.【题目详解】解:(1)原式====;(2)原式===;(3)①×6得:③,③-②得,解得,将代入②得,解得,即该方程组的解为:.【题目点拨】本题考查二次根式的混合运算和解方程组.(1)(2)中掌握二次根式的性质和二次根式的乘除法则是解题关键;(3)中掌握消元思想是解题关键.22、(1)等边三角形;(2)8小时【分析】(1)根据题意可得∠BCD=∠BDC=60°,即可知△BCD是等边三角形;

(2)由(1)可求得BC,CD的长,然后易证得△ABC是等腰三角形,继而求得AD的长,则可求得该船从A处航行至D处所用的时间;【题目详解】解:(1)根据题意得:∠BCD=90°-30°=60°,∠BDC=90°-30°=60°,

∴∠BCD=∠BDC=60°,

∴BC=BD,

∴△BCD是等边三角形;

(2)∵△BCD是等边三角形,

∴CD=BD=BC=60海里,

∵∠BAC=90°-60°=30°,

∴∠ABC=∠BCD-∠BAC=30°,

∴∠BAC=∠ABC,

∴AC=BC=60海里,

∴AD=AC+CD=120海里,

∴该船从A处航行至D处所用的时间为:120÷15=8(小时);【题目点拨】此题考查了方向角问题.注意准确构造直角三角形是解此题的关键.23、(1),;(2)画图见解析;(3)【分析】(1)利用点的坐标的表示方法写出A点和B点坐标;(2)利用点的坐标平移规律写出点、、的坐标,然后描点得到;(3)用一个矩形的面积分别减去三个三角形的面积可得到△ABC的面积.【题目详解】解:(1);(2)如图所示:即为所求;(3).【题目点拨】此题考查坐标与图形变化——平移,解题关键在于掌握在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.24、该车超速行驶了【解题分析】试题分析:根据题意得到AB=28,∠P=45°,∠PAC=90°,∠ABQ=45°,则∠ACP=45°,∠BCQ=45°,作AH⊥PQ于H,根据题意有AH=BQ,再证明△ACH≌△BCQ,得到AC=BC=AB=14,根据等腰直角三角形的性质得PC=AC=28,CQ==14,所以PQ=PC+CQ=42,然后根据速度公式计算出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论