小升初数学应用题及答案50题(九篇)_第1页
小升初数学应用题及答案50题(九篇)_第2页
小升初数学应用题及答案50题(九篇)_第3页
小升初数学应用题及答案50题(九篇)_第4页
小升初数学应用题及答案50题(九篇)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本文格式为Word版,下载可任意编辑——小升初数学应用题及答案50题(九篇)范文为教学中作为模范的文章,也往往用来指写作的模板。往往用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?下面是我帮大家整理的优质范文,仅供参考,大家一起来看看吧。

小升初数学应用题及答案50题篇一

解:充分利用10的倍数。

两个学校共有人数比1472=1008人少,比1471=994人多,即共有1000人。

改租19座的中巴后,可以乘坐100019=52辆12人,即53辆车。

所以小李学校租车(53+7)2=30辆车,小阳学校租车30-7=23辆。

所以小李学校有学生3019=570人,小阳学校有学生1000-570=430人。

验证一下:

假使小李少10人,还是30辆车,小阳学校有学生430+10=440人

44019=23辆3人,需要24辆车,相差30-24=6辆,不符合要求。

两校参与扫墓的学生共有:1472=1008(人)

因去的人数是10的倍数,车辆不能超员,所以学生总数1000人;

设:小李学生数为x,则小阳学生数为1000-x

小李租19座的中巴数=x/19

小阳租19座的中巴数=(1000-x)/19

x/19-(1000-x)/19=7

2x-1000=7*19

2x=1133

小李学生数为x=570(人)

小阳学生数为1000-x=430(人)

小升初数学应用题及答案50题篇二

1.修一条水渠,第一周修了全长的15,正好是600米,其次周修了全长的35%,其次周修了多少米?

2.文具店运进红蓝墨水65箱,当红墨水售出11箱,蓝墨水售出20%后,剩下的红蓝墨水相等。问售出蓝墨水多少箱?

3.修路队三天修完一段路。第一天修了全长的25%,其次天修了400米,第三天和其次天修路的长度比是5︰4.这段路长是多少米?

4.做一种零件,8人0.5小时完成64个,照这样计算,3小时要完成144个零件,需要多少个工人?

5.一件工程,甲、乙两人合作18天可以完成。甲单独做要30天完成。现在由甲、乙两人合作6天后,再由甲独做10天,这件工程还剩几分之几?

6,某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?

1,解:600÷1/5=3000(米)

3000*35%=1050(米)

答:其次周修了1050米。

2,解:设售出蓝墨水为x箱,那么蓝墨水有x÷20%=5x箱

红墨水有(65-5x)箱

65-5x)-11=4x

x=6(箱)

答:售出蓝墨水6箱。

3,解:设全长是x米

3/4)x-400:400=5:4

x=1200(米)

答:全长为1200米。

4,8个人0.5小时做64个,

1个人1个小时就做16个,

1个人3个小时就做48个

144÷48=3

所以,需要3个人

答:需要3个人。

5,解:设这个工程为单位1.

1÷18=1/18(甲乙的效率和)

1÷30=1/30(甲的效率)

1/18*6=6/18

1/30*10=10/30

1-(6/18)-(10/30)=1/3

答:还剩下1/3.

6,原来每天的利润是72×25%×100=1800元

后来每件的利润是是72÷(1+25%)×(1-90%)=9元

后来每天获得利润100×2.5×9=2250元

所以,增加了2250-1800=450元

答:增加了450元。

小升初数学应用题及答案50题篇三

1.某地收取电费的标准是:每月用电量不超过50度,每度收5角;假使超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?

由于33÷8=4...1,33÷5=6...3,即都有余数,所以,既不可能两户都达到或超过50度用电量,也不可能两户都未达到50度用电量,因此只有一种状况:

2.王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?

效率比原来降低1/5,即变为原来的4/5,那么所用时间就是原来的5/4,比原来多用:

5/4-1=1/4

所以,推迟的20分钟就是原来完成160个零件所用时间的1/4。原来完成160个零件需要:

20/(1/4)=80分钟

这批零件共有:160/(80/120)=240个。

160个的时间比是4:5,相差1份,是20分钟

4份是80分钟

160个前做了120-80=40分,

80分160个,40分160/2=80

160+80=240

我也来做一种方法:

推迟的20分钟,即1/3小时相当于后来用时的1/5,所以,后来用时1/3÷1/5=5/3小时

原来的工效做160个零件就用了5/3-1/3=4/3小时。

所以,每小时可以完成160÷4/3=120个

2小时完成任务,这批零件就有120×2=240个

33.妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张0.50元,丙种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?

买甲比买丙多8+6=14张,而丙每张比甲贵0.70元,多买14张甲一共0.50*14=7元,所以可以支付丙7/0.70=10张,钱数一共是1.20*0=12元,可以买乙10+6=16张,所以乙的价钱是12/16=0.75元。

34.一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分派公允合理,那么每间房子的价值是多少元?

我的思路是这样的。

三个儿子共拿出1200×3=3600元,

这3600元刚好就是两个儿子应当分得的钱。

每个儿子应当分得3600÷2=1800元。

三间房子共值1800×5=9000元,

那么每间房子值9000÷3=3000元。

再做一种思路:

每人应当分得3÷5=3/5间房子,那么分得房子的就多分了1-3/5=2/5间

也就是说2/5间房子值1200元,所以每间房子值1200÷2/5=3000元

继续共享算法:

假使还有5-3=2间房子,每人都分得房子,那么就要拿出1200×5=6000元

所以,每间房子值6000÷2=3000元。

35.小明和小燕的画册都不足20本,假使小明给小燕a本,则小明的画册就是小燕的2倍;假使小燕给小明a本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?

我的思考如下:

小燕两次相差2a,且两次相差总画册的1/3-1/4=1/12

当a=1时,两人的总和是2÷1/12=24本,少于38本

当a=2时,两人的总和是4÷1/12=48本,多于38本

所以,a=1

第一次交换,小燕有24×1/3=8本,

原来小燕有8-1=7本

小明有24-7=17本

36.有红、黄、白三种球共160个.假使取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;假使取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?

先理清思路:根据题意可以得出下面的关系。

37.爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?

充分利用年龄差来解答问题。

妹妹:9岁,哥哥:兄妹差+9,爸爸:(兄妹差+9)×3

妹妹:兄妹差,哥哥:兄妹差×2,爸爸:34岁

由于爸爸和哥哥的年龄差也将恒定不变。

所以,(兄妹差+9)×2=34-兄妹差×2

所以,兄妹差是(34-2×9)÷4=4岁

即当妹妹9岁时,哥哥4+9=13岁,爸爸13×3=39岁

三人年龄和是9+13+39=61岁

所以,再过(64-61)÷3=1年,年龄和就是64岁了。

所以,现在妹妹9+1=10岁,哥哥13+1=14岁,爸爸39+1=40岁

38.b在a,c两地之间.甲从b地到a地去送信,出发10分钟后,乙从b地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从b地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回b地至少要用多少时间?

我选择让丙先去追后出发的乙,10÷(3-1)=5分钟追上,

拿到信后去追甲,甲乙相距甲行10+10+10+5+5=40分钟的路程,

丙用40÷(3-1)=20分钟追上甲

交换信后返回追乙,这时乙丙相距乙行40+20×2=80分钟的路程,

丙用80÷(3-1)=40分钟追上乙,把信交给乙。

所以,共用了5+20+40=65分钟。

乙共行了65+10=75分钟,丙回到b地还要75÷3=25分钟。

所以共用去65+25=90分钟

又想到一个思路,追上并返回。

追上乙并返回,需要10÷(3-1)×2=10分钟

追上甲并返回,需要10×3÷(3-1)×2=30分钟

再追上乙并返回,需要(10×2+30)÷(3-1)×2=50分钟

共用10+30+50=90分钟

39.甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?

假设全是甲车间的工人,共生产:94*15=1410把;

40.甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?

假使甲的速度和乙一致,那么甲的路程应当是乙的10/14=5/7,比乙少2/7;

而实际甲是乙的6/7,比乙少1/7,是由于甲每分钟比乙多走12米、10分钟共多走12*10=120米。

所以,这120米就是乙路程的2/7-1/7=1/7;

乙回家的路程为:120/(1/7)=840米。

我也做两种基本的方法

方法一:

乙行甲那么远的路,就要14÷(1+1/6)=12分钟

所以甲回家有12÷(1/10-1/12)=720米

所以乙回家的路程是720×(1+1/6)=840米

方法二:

甲行乙那么所需要的时间是10×(1+1/6)=35/3分钟

所以乙回家的路程是12÷(3/35-1/14)=840米

比实际少生产:1998-1410=588把;

一个甲车间工人换成乙车间的,多生产:43-15=28把;

乙车间共有工人:588/28=21人;

甲车间每天比乙车间多生产:1998-21*43*2=192把。

红球×1/3+黄球×1/4+白球×1/5=160-120=40………………①

红球×1/5+黄球×1/4+白球×1/3=160-116=44………………②

红球+黄球+白球=160………………③

利用初中的代数消元法思想来解答。

假使依照第一种方案,取160÷40=4次刚好取完,

红球还差4/3-1=1/3,白球就多出1-4/5=1/5,黄球取完了,

说明红球的1/3和白球的1/5相等,红球和白球的个数比是3:5

依照两种方案的比较发现,白球的1/3-1/5=2/15比红球的2/15多4个

即白球比红球多4÷2/15=30个

所以红球有30÷(5-3)×3=45个,白球有45+30=75个

黄球就是160-45-75=40个

甲超过了50度,乙未达到50度。

由于33=5*5+8,可以得出:

甲用电:50+1=51度,乙用电:50-5=45度。

假使都超过50度,那么相差就应当是8的倍数,显然33不是8的倍数;

假使都没有超过50度,那么相差就应当是5的倍数,同样33也不是5的倍数。

因此,甲50度以上,乙50度以下。

33-8×n的得数是5的倍数(从个位数字可以得出)只有33-8×1=25=5×5符合要求。

所以甲50+1=51度,乙50-5=45度

小升初数学应用题及答案50题篇四

答案:

给徒弟加工的零件数加上10*4=40个以后,师傅加工零件个数的1/3就正好等于徒弟加工零件个数的1/4。这样,零件总数就是3+4=7份,师傅加工了3份,徒弟加工了4份。

答案:

这个题目和第8题比较近似。但比第8题繁杂些!

大轿车行完全程比小轿车多17-5+4=16分钟

所以大轿车行完全程需要的时间是16÷(1-80%)=80分钟

小轿车行完全程需要80×80%=64分钟

由于大轿车在中点休息了,所以我们要探讨在中点是否能追上。

大轿车出发后80÷2=40分钟到达中点,出发后40+5=45分钟离开

小轿车在大轿车出发17分钟后,才出发,行到中点,大轿车已经行了17+64÷2=49分钟了。

说明小轿车到达中点的时候,大轿车已经又出发了。那么就是在后面一半的路追上的。

既然后来两人都没有休息,小轿车又比大轿车早到4分钟。

那么追上的时间是小轿车到达之前4÷(1-80%)×80%=16分钟

所以,是在大轿车出发后17+64-16=65分钟追上。

所以此时的时刻是11时05分。

答案:

甲每小时完成1/14,乙每小时完成1/20,两人的工效和为:1/14+1/20=17/140;

由于1/(17/140)=8(小时)1/35,即两人各打8小时之后,还剩下1/35,这部分工作由甲来完成,还需要:

(1/35)/(1/14)=2/5小时=0.4小时。

所以,打完这部书稿时,两人共用:8*2+0.4=16.4小时。

答案:

黄气球数量:(32+4)/2=18个,花气球数量:(32-4)/2=14个;

黄气球总价:(18/3)*2=12元,花气球总价:(14/2)*3=21元。

答案:

船的顺水速度:60+20=80米/分,船的逆水速度:60-20=40米/分。

由于船的顺水速度与逆水速度的比为2:1,所以顺流与逆流的时间比为1:2。

这条船从上游港口到下游某地的时间为:

3小时30分*1/(1+2)=1小时10分=7/6小时。(7/6小时=70分)

从上游港口到下游某地的路程为:

80*7/6=280/3千米。(80×70=5600)

答案:

由于两个粮仓容量之和是一致的,总共的面粉43+37=80吨也没有发生变化。

所以,乙粮仓差1-1/2=1/2没有装满,甲粮仓差1-1/3=2/3没有装满。

说明乙粮仓的1/2和甲粮仓的2/3的容量是一致的。

所以,乙仓库的容量是甲仓库的2/3÷1/2=4/3

所以,甲仓库的容量是80÷(1+4/3÷2)=48吨

乙仓库的容量是48×4/3=64吨

答案:

根据题意得:

甲数=乙数×商+2;乙数=丙数×商+2

甲、乙、丙三个数都是整数,还有丙数大于2。

商是大于0的整数,假使商是0,那么甲数和乙数都是2,就不符合要求。

所以,必然存在,甲数>乙数>丙数,由于丙数>2,所以乙数大于商的2倍。

由于甲数+乙数=乙数×(商+1)+2=478

由于476=1×476=2×238=4×119=7×68=14×34=17×28,所以“商+1〞<17

当商=1时,甲数是240,乙数是238,丙数是236,和就是714

当商=3时,甲数是359,乙数是119,丙数是39,和就是517

当商=6时,甲数是410,乙数是68,丙数是11,和就是489

当商=13时,甲数是444,乙数是34,丙数是32/11,不符合要求

当商=16时,甲数是450,乙数是28,丙数是26/16,不符合要求

所以,符合要求的结果是。714、517、489三组。

答案:

这个问题很难理解,细心看看哦。

原定时间是1÷10%×(1-10%)=9小时

假使速度提高20%行完全程,时间就会提前9-9÷(1+20%)=3/2

由于只比原定时间早1小时,所以,提高速度的路程是1÷3/2=2/3

所以甲乙两第之间的距离是180÷(1-2/3)=540千米

山岫老师的解答如下:

第8题我是这样想的:原速度:减速度=10:9,

所以减时间:原时间=10:9,

所以减时间为:1/(1-9/10)=10小时;原时间为9小时;

原速度:加速度=5:6,原时间:加时间=6:5,

行驶完180千米后,原时间=1/(1/6)=6小时,

所以形式180千米的时间为9-6=3小时,原速度为180/3=60千米/时,

所以两地之间的距离为60*9=540千米

小升初数学应用题及答案50题篇五

133.在一环形跑道上,甲从a点,乙从b点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到达b点,又过8分钟两人再次相遇.甲、乙环行一周各需要多少分钟?

解:甲乙合行一圈需要8+4=12分钟。乙行6分钟的路程,甲只需4分钟。

所以乙行的12分钟,甲需要12÷6×4=8分钟,所以甲行一圈需要8+12=20分钟。乙行一圈需要20÷4×6=30分钟。

134.甲、乙沿同一马路相向而行,甲的速度是乙的1.5倍.已知甲上午8点经过邮局,乙上午10点经过邮局,问甲、乙在中途何时相遇?

解:我们把乙行1小时的路程看作1份,

那么上午8时,甲乙相距10-8=2份。

所以相遇时,乙行了2÷(1+1.5)=0.8份,0.8×60=48分钟,

所以在8点48分相遇。

135.甲、乙两人同时从山脚开始爬山,到达山顶后就马上下山.他们两人下山的速度都是各自上山速度的2倍.甲到山顶时,乙距山顶还有400米,甲回到山脚时,乙刚好下到半山腰.求从山顶到山脚的距离.

解:假设甲乙可以继续上行,那么甲乙的速度比是(1+1÷2):(1+1/2÷2)=6:5

所以当甲行到山顶时,乙就行了5/6,所以从山顶到山脚的距离是400÷(1-5/6)=2400米。

136.一辆公共汽车载了一些乘客从起点出发,在第一站下车的乘客是车上总数(含一名司机和两名售票员)的1/7,其次站下车的乘客是车上总人数的1/6,第六站下车的乘客是车上总人数的1/2,再开车是车上就剩下1名乘客了.已知途中没有人上车,问从起点出发时,车上有多少名乘客?

解:最终剩下1+1+2=4人。那么车上总人数是

4÷(1-1/2)÷(1-1/3)÷……÷(1-1/6)÷(1-1/7)=28人

那么,起点时车上乘客有28-3=25人。

137.有三块草地,面积分别是4亩、8亩、10亩.草地上的草一样厚,而且长得一样快,第一块草地可供24头牛吃6周,其次块草地可供36头牛吃12周.问第三块草地可供50头牛吃几周?

解法一:设每头牛每周吃1份草。

第一块草地4亩可供24头牛吃6周,

说明每亩可供24÷4=6头牛吃6周。

其次块草地8亩可共36头牛吃12周,

说明每亩草地可供36÷8=9/2头牛吃12周。

所以,每亩草地每周要长(9/2×12-6×6)÷(12-6)=3份

所以,每亩原有草6×6-6×3=18份。

因此,第三块草地原有草18×10=180份,每周长3×10=30份。

所以,第三块草地可供50头牛吃180÷(50-30)=9周

解法二:设每头牛每周吃1份草。我们把题目进行变形。

有一块1亩的草地,可供24÷4=6头牛吃6周,供36÷8=9/2头牛吃12周,那么可供50÷10=5头牛吃多少周呢?

所以,每周草会长(9/2×12-6×6)÷(12-6)=3份,

原有草(6-3)×6=18份,

那么就够5头牛吃18÷(5-3)=9周

138.b地在a,c两地之间.甲从b地到a地去,出发后1小时,乙从b地出发到c地,乙出发后1小时,丙突然想起要通知甲、乙一件重要的事情,于是从b地出发骑车去追赶甲和乙.已知甲和乙的速度相等,丙的速度是甲、乙速度的3倍,为使丙从b地出发到最终赶回b地所用的时间最少,丙应率先追甲再返回追乙,还是先追乙再返回追甲?

我的思考如下:

假使先追乙返回,时间是1÷(3-1)×2=1小时,

再追甲后返回,时间是3÷(3-1)×2=3小时,

共用去3+1=4小时

假使先追甲返回,时间是2÷(3-1)×2=2小时,

再追乙后返回,时间是3÷(3-1)×2=3小时,

共用去2+3=5小时

所以先追乙时间最少。故先追更后出发的。

小升初数学应用题及答案50题篇六

20xx年小升初数学应用题及答案

1.甲、乙、丙三人在a、b两块地植树,a地要植900棵,b地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在a地植树,丙在b地植树,乙先在a地植树,然后转到b地植树.两块地同时开始同时终止,乙应在开始后第几天从a地转到b地?

总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵

需要种的天数是215086=25天

甲25天完成2425=600棵

那么乙就要完成900-600=300棵之后,才去帮丙

即做了30030=10天之后即第11天从a地转到b地。

2.有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,其次块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

这是一道牛吃草问题,是比较繁杂的牛吃草问题。

把每头牛每天吃的草看作1份。

由于第一块草地5亩面积原有草量+5亩面积30天长的草=1030=300份

所以每亩面积原有草量和每亩面积30天长的草是3005=60份

由于其次块草地15亩面积原有草量+15亩面积45天长的草=2845=1260份

所以每亩面积原有草量和每亩面积45天长的草是126015=84份

所以45-30=15天,每亩面积长84-60=24份

所以,每亩面积每天长2415=1.6份

所以,每亩原有草量60-301.6=12份

第三块地面积是24亩,所以每天要长1.624=38.4份,原有草就有2412=288份

新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此28880=3.6头牛

所以,一共需要38.4+3.6=42头牛来吃。

两种解法:

解法一:

设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)

解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头

3.某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?

甲乙合作一天完成12.4=5/12,支付18002.4=750元

乙丙合作一天完成1(3+3/4)=4/15,支付15004/15=400元

甲丙合作一天完成1(2+6/7)=7/20,支付16007/20=560元

三人合作一天完成(5/12+4/15+7/20)2=31/60,

三人合作一天支付(750+400+560)2=855元

甲单独做每天完成31/60-4/15=1/4,支付855-400=455元

乙单独做每天完成31/60-7/20=1/6,支付855-560=295元

丙单独做每天完成31/60-5/12=1/10,支付855-750=105元

所以通过比较

选择乙来做,在11/6=6天完工,且只用2956=1770元

4.一个圆柱形容器内放有一个长方形铁块.现开启水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.

把这个容器分成上下两部分,根据时间关系可以发现,上面部分水的体积是下面部分的183=6倍

上面部分和下面部分的高度之比是(50-20):20=3:2

所以上面部分的底面积是下面部分装水的底面积的632=4倍

所以长方体的底面积和容器底面面积之比是(4-1):4=3:4

独特解法:

(50-20):20=3:2,当没有长方体时灌满20厘米就需要时间18*2/3=12(分),

所以,长方体的体积就是12-3=9(分钟)的水量,由于高度一致,

所以体积比就等于底面积之比,9:12=3:4

小升初数学应用题及答案50题篇七

知识点

(大盈-小盈)÷两次分派的个数差=分派对象数

(大亏-小亏)÷两次分派的个数差=分派对象数

(盈+亏)÷两次分派的个数差=分派对象数

1、三年级一班少先队员参与学校搬砖劳动.假使每人搬4块砖,还剩17块;假使每人搬7块,则少10块砖.这个班少先队有几个人?要搬的砖共有多少块?

2、学校为新生分派宿舍.假使每个房间住3人,则多出22人;假使每个房间多住5人,则空1个房间.问宿舍有多少间?新生有多少人?

3、妈妈买来一篮橘子分给全家人,假使其中两人分4个,其余人每人分2个,则多出4个;假使其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?

答案

1、三年级一班少先队员参与学校搬砖劳动.假使每人搬4块砖,还剩17块;假使每人搬7块,则少10块砖.这个班少先队有几个人?要搬的砖共有多少块?

解:总差为17+10=27(块);

分派之差为7-4=3(块);

所以有少先队员27÷3=9(人)

共有砖:4×9+17=53(块).

答:这个班少先队有9个人,要搬的砖共有53块。

考点:盈亏问题,一盈一亏

2、学校为新生分派宿舍.假使每个房间住3人,则多出22人;假使每个房间多住5人,则空1个房间.问宿舍有多少间?新生有多少人?

解:第一次盈22人,其次次多出一个房间则是亏3+5=8(人);

总差为22+8=30(人);

两次分派之差为5人,

所以宿舍有30÷5=6(间),

新生共有3×6+22=40(人).

答:宿舍有6间,新生有40人。

考点:盈亏问题

注意点:空出一个房间,则是少了8人入住,则是亏8人

3、妈妈买来一篮橘子分给全家人,假使其中两人分4个,其余人每人分2个,则多出4个;假使其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?

解:其中两人分4个,其余每人分2个,则多出4个"转化为"全家每人都分2个,

多出4+2×(4-2)=8个;

一人分6个,其余每人分4个,则缺少12个"转化为"全家每人都分4个,

缺少12-(6-4)=10个;

由盈亏问题基本公式可知:全家的人数有(8+10)÷(4-2)=9(人)

买来橘子2×9+8=26(个)

考点:盈亏问题

注意点:把每个对象分派的数量转换成一致的

小升初数学应用题及答案50题篇八

1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?

答案:甲收8元,乙收2元。

解:

“三人将五条鱼平分,客人拿出10元〞,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。

又由于“甲钓了三条〞,相当于甲吃之前已经出资3*6=18元,“乙钓了两条〞,相当于乙吃之前已经出资2*6=12元。

而甲乙两人吃了的价值都是10元,所以

甲还可以收回18-10=8元

乙还可以收回12-10=2元

刚好就是客人出的钱。

2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的.几分之几?

答案22/25

最好画线段图思考:

把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。增加的成本2份刚好是下降利润的2份。售价都是25份。

所以,今年的成本占售价的22/25。

3.甲乙两车分别从a.b两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达b地时,乙离a地还有10千米,那么a.b两地相距多少千米?

解:

原来甲.乙的速度比是5:4

现在的甲:5×(1-20%)=4

现在的乙:4×(1+20%)4.8

甲到b后,乙离a还有:5-4.8=0.2

总路程:10÷0.2×(4+5)=450千米

4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?

答案为64:27

解:根据“周长减少25%〞,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16。

根据“体积增加1/3〞,可知体积是原来的4/3。

体积÷底面积=高

现在的高是4/3÷9/16=64/27,也就是说现在的高是原来的高的64/27

或者现在的高:原来的高=64/27:1=64:27

5.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。橘子正好占总数的13分之2。一共运来水果多少吨?

其次题:答案为65吨

橘子+苹果=30吨

香蕉+橘子+梨=45吨

所以橘子+苹果+香蕉+橘子+梨=75吨

橘子÷(香蕉+苹果+橘子+梨)=2/13

说明:橘子是2份,香蕉+苹果+橘子+梨是13份

橘子+香蕉+苹果+橘子+梨一共是2+13=15份

小升初

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论