版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
鲁教版(五四制)数学七年级上册期中复习串讲第二章轴对称1对接课标单元架构2知识梳理整合提升3典题自测迎战中考目录对接课标单元架构1生活中的轴对称轴对称的性质轴对称图形两个图形成轴对称镜面对称线段角等腰三角形轴对称的应用2知识梳理整合提升一、轴对称中的相关概念1.轴对称.对于两个平面图形,如果沿一条直线对折后能够完全重合,那么称这两个图形成轴对称,两个图形中的对应点叫做关于这条直线的对称点,这条直线叫做对称轴.2.轴对称图形.如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.3.轴对称与轴对称图形的区别与联系.(1)区别.①轴对称是指两个平面图形间的位置关系,轴对称图形是指一个具有特殊形状的平面图形;②轴对称涉及两个平面图形,轴对称图形是对一个平面图形而言的.(2)联系.①定义中都有一条直线,都要沿着这条直线折叠重合;②如果把轴对称图形沿对称轴分成两部分(即看成两个平面图形),那么这两个平面图形就关于这条直线成轴对称;反过来,如果把成轴对称的两个平面图形看成一个整体,那么它就是一个轴对称图形.二、轴对称的性质和判定1.轴对称与轴对称图形的性质.(1)轴对称图形(或关于某条直线对称的两个平面图形)的对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等.(2)成轴对称的两个平面图形全等,轴对称图形被对称轴分成的两个平面图形全等.(3)如果两个平面图形关于某直线对称,那么对称轴是对应点连线的垂直平分线.(4)两个平面图形关于某直线对称,如果它们的对应线段或对应线段的延长线相交,那么交点在对称轴上.2.等腰三角形、等边三角形的性质和判定.
名称项目
等腰三角形
等边三角形
性质
①边:两腰相等②角:两个底角相等(等边对等角)③重要线段:顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)④对称性:是轴对称图形,对称轴为顶角的平分线或底边上的中线或底边上的高所在的直线
①边:三边都相等②角:三个角都相等,都等于60°③重要线段:与等腰三角形的相同④对称性:是轴对称图形,对称轴有三条
名称项目
等腰三角形
等边三角形
判定①利用定义②等角对等边①利用定义②三个内角都相等的三角形是等边三角形③有一个角是60°的等腰三角形是等边三角形3典题自测迎战中考1.如图,在△ABC中,AB=AC,D是BC的中点,过点A作EF∥BC,且AE=AF,试说明:DE=DF.解:如图,连接AD.∵AB=AC,BD=CD,∴AD⊥BC.∵EF∥BC,∴AD⊥EF.又∵AE=AF,∴AD垂直平分EF.∴DE=DF.2.如图,在△ABC中,AB=AC,点P从点B出发沿线段BA移动,同时,点Q从点C出发沿线段AC的延长线移动,点P,Q移动的速度相同,P,Q与直线BC相交于点D.(1)如图①,试说明:PD=QD;解:如图①,过点P作PF∥AC交BC于点F.∵点P和点Q同时出发,且速度相同,∴BP=CQ.∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠CQD.又∵AB=AC,∴∠B=∠ACB.∴∠B=∠PFB.∴BP=PF.∴PF=CQ.∴△PFD绕点D旋转180°可以与△QCD重合,∴PD=QD.(2)如图②,过点P作直线BC的垂线,垂足为E,当P,Q在移动的过程中,线段BE,DE,CD中是否存在长度保持不变的线段?请说明理由.解:存在,ED的长度保持不变.理由如下:如图②,过点P作PF∥AC交BC于点F.由(1)知PB=PF.∵PE⊥BF,∴BE=EF.3.如图,在△ABC中,AB=AC,D是△ABC外一点,且∠ABD=60°,∠ACD=60°.试说明:BD+DC=AB.解:如图,延长BD至E,使BE=AB,连接CE,AE.∵∠ABE=60°,BE=AB,∴△ABE为等边三角形.∴∠AEB=60°,AB=AE.又∵∠ACD=60°,∴∠ACD=∠AEB.∵AB=AC,AB=AE,∴AC=AE.∴∠ACE=∠AEC.∴∠DCE=∠DEC.∴DC=DE.∴AB=BE=BD+DE=BD+CD,即BD+DC=AB.4.如图,在△ABC中,∠BAC=120°,AD⊥BC于点D,且AB+BD=DC,求∠C的度数.解:在DC上截取DE=BD,连接AE,∵AD⊥BC,BD=DE,∴AD是线段BE的垂直平分线.∴AB=AE.∴∠B=∠AEB.∵AB+BD=CD,DE=BD,∴AB+DE=CD.而CD=DE+EC,∴AB=EC.∴AE=EC.故设∠EAC=∠C=x,∵∠AEB为△AEC的外角,∴∠AEB=∠EAC+∠C=2x.∴∠B=2x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 犬类繁殖业务合同
- 游乐场设施钢结构安装施工合同
- 商业地产二手房交易合同样本
- 政府机关宽带安装施工合同
- 艺术学校供配电工程合同
- 临时供热施工合同范本
- 珠宝首饰店营业员聘用协议
- 垃圾处理场顶管施工合同
- 跨行业合同管理策略
- 校园十佳歌手活动
- 江苏省某高速公路结构物台背回填监理细则
- 电大护理本科临床实习手册内容(原表)
- 当代德国学校劳动教育课程构建的经验与启示共3篇
- “小金库”治理与防范 习题及答案
- 王伟核桃经济价值及加工利用
- 新生儿胎粪吸入综合征临床路径标准住院流程及路径表单
- 氯化钠特性表
- 钻井井架起升钢丝绳管理台账
- 单片机原理与应用说课
- 船舶租赁尽职调查
- GB/T 13912-2020金属覆盖层钢铁制件热浸镀锌层技术要求及试验方法
评论
0/150
提交评论