2022年安徽省合肥市教育学院附属中学高二数学理月考试题含解析_第1页
2022年安徽省合肥市教育学院附属中学高二数学理月考试题含解析_第2页
2022年安徽省合肥市教育学院附属中学高二数学理月考试题含解析_第3页
2022年安徽省合肥市教育学院附属中学高二数学理月考试题含解析_第4页
2022年安徽省合肥市教育学院附属中学高二数学理月考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年安徽省合肥市教育学院附属中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数的定义域为,部分对应值如下表.的导函数的图象如图所示.下列关于函数的命题:①函数是周期函数;②函数在是减函数;③如果当时,的最大值是2,那么的最大值为4;④当时,函数有4个零点.其中真命题的个数是(

)

A.4个

B.3个

C.2个

D.1个参考答案:D画出原函数的大致图象,得:①为假命题,[-1,0]与[4,5]上单调性相反,但原函数图象不一定对称.②为真命题.因为在[0,2]上导函数为负,故原函数递减;③为假命题,当t=5时,也满足x∈[-1,t]时,的最大值是2;④为假命题,可能有有2个或3个或4个零点.故选D2.设函数在定义域内可导,的图象如图1所示,则导函数可能为()y

参考答案:D3.函数是(

)(A)最小正周期为的奇函数

(B)最小正周期为的偶函数

(C)最小正周期为的奇函数

(D)最小正周期为的偶函数参考答案:A4.已知是首项为1的等比数列,是的前n项和,且,则数列的前5项和为()A.或5

B.或5

C.

D.参考答案:C5.“若x≠a且x≠b,则x2-(a+b)x+ab≠0”的否命题

)A、若x=a且x=b,则x2-(a+b)x+ab=0B、若x=a或x=b,则x2-(a+b)x+ab≠0C、若x=a且x=b,则x2-(a+b)x+ab≠0D、若x=a或x=b,则x2-(a+b)x+ab=0参考答案:D略6.已知随机变量Z服从正态分布,若P(Z>2)=0.023,则P(-2≤Z≤2)=(

)A.0.477

B.0.625

C.0.954

D.0.977参考答案:C7.函数在处有极值10,则m,n的值是(

A.

B.

C.

D.参考答案:B略8.点在直线上的射影是,则的值依次为(

)A.

B.

C.

D.参考答案:C9.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()种

A

480

B

720

C

960

D

1440参考答案:A略10.由曲线围成的图形的面积为(

)A.4+2π

B.4+4π

C.8+2π

D.8+4π参考答案:D由题意,作出如图的图形,由曲线关于原点对称,当x≥0,y≥0时,解析式为(x﹣1)2+(y﹣1)2=2,故可得此曲线所围的力图形由一个边长为2的正方形与四个半径为的半圆组成,所围成的面积是2×2+4××π×()2=8+4π故选:D.

二、填空题:本大题共7小题,每小题4分,共28分11.若三点A(3,3),B(a,0),C(0,b)(其中a?b≠0)共线,则+=.参考答案:【考点】三点共线.【分析】利用向量的坐标公式:终点坐标减去始点坐标,求出向量的坐标;据三点共线则它们确定的向量共线,利用向量共线的充要条件列出方程得到a,b的关系.【解答】解:∵点A(3,3)、B(a,0)、C(0,b)(ab≠0)∴=(a﹣3,﹣3),=(﹣3,b﹣3),∵点A(3,3)、B(a,0)、C(0,b)(ab≠0)共线∴∴(a﹣3)×(b﹣3)=﹣3×(﹣3)所以ab﹣3a﹣3b=0,∴+=,故答案为:.【点评】本题考查利用点的坐标求向量的坐标、向量共线的充要条件、向量共线与三点共线的关系.12.设函数,若,0≤≤1,则的值为

.参考答案:略13.若a,b是正常数,a≠b,x,y∈(0,+∞),则,当且仅当时上式取等号.利用以上结论,可以得到函数()的最小值为

,取最小值时x的值为

参考答案:25,【考点】基本不等式在最值问题中的应用.【分析】依据题设中的条件的形式,可推知当函数f(x)有最小值,求得x,进而最小值也可求.【解答】解:依题意可知=≥=25,当且仅当时,即x=时上式取等号,最小值为25,故答案为:25,【点评】本题主要考查了基本不等式在最值问题中的应用.考查了学生通过已知条件,解决问题的能力.14.

.参考答案:2,,则:,,∴答案是2

15.已知F1是椭圆的左焦点,P是椭圆上的动点,A(1,1)是一定点,则PA+PF1的最大值为.参考答案:考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:确定A在椭圆内部,利用最大PA+PF1=2a+AF2,即可求得结论.解答:解:由题意,A(1,1)在椭圆内部,椭圆长轴2a=10,右焦点坐标F2(4,0),则AF2==所以最大PA+PF1=2a+AF2=10+故答案为:点评:本题考查椭圆的标准方程,考查椭圆的定义,考查学生分析解决问题的能力,属于中档题.16.双曲线以为焦点,且虚轴长为实轴长的倍,则该双曲线的标准方程是

.参考答案:17.已知点A(﹣2,3)、B(3,2),若直线l:y=kx﹣2与线段AB没有交点,则l的斜率k的取值范围是.参考答案:【考点】二元一次不等式(组)与平面区域.【分析】根据题意,分析可得,原问题可以转化为点A、B在直线的同侧问题,利用一元二次不等式对应的平面区域可得[k(﹣2)﹣3﹣2)]×[k(3)﹣2﹣2]>0,解可得k的范围,即可得答案.【解答】解:根据题意,直线l:y=kx﹣2与线段AB没有交点,即A(﹣2,3)、B(3,2)在直线的同侧,y=kx﹣2变形可得kx﹣y﹣2=0,必有[k(﹣2)﹣3﹣2)]×[k(3)﹣2﹣2]>0解可得:k∈,故答案为.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在△ABC中,A、B、C的对边分别为a、b、c,且成等差数列.(Ⅰ)求B的值;

(Ⅱ)求的范围.参考答案:在△ABC中,A、B、C的对边分别为a、b、c,且成等差数列.(Ⅰ)求B的值;

Ⅱ)求的范围.(Ⅰ),∴,∴,∴(Ⅱ),∴,∴19.已知圆心C为的圆,满足下列条件:圆心C位于x轴正半轴上,与直线相切且被轴y截得的弦长为,圆C的面积小于13.(Ⅰ)求圆C的标准方程;(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.参考答案:解:(Ⅰ)设圆:,由题意知解得或又,故圆的标准方程为:(Ⅱ)当斜率不存在时,直线为:不满足题意.当斜率存在时,设直线:,,又与圆相交于不同的两点,联立消去得:,解得或,,假设,则解得因为,假设不成立.不存在这样的直线20.已知函数f(x)=lnx+x2﹣2ax+1(a为常数).(1)讨论函数f(x)的单调性;(2)若存在x0∈(0,1],使得对任意的a∈(﹣2,0],不等式2mea(a+1)+f(x0)>a2+2a+4(其中e为自然对数的底数)都成立,求实数m的取值范围.参考答案:【考点】6K:导数在最大值、最小值问题中的应用;3E:函数单调性的判断与证明;7E:其他不等式的解法.【分析】(1)求出函数的导函数,对二次函数中参数a进行分类讨论,判断函数的单调区间;(2)根据(1),得出f(x0)的最大值,问题可转化为对任意的a∈(﹣2,0],不等式2mea(a+1)﹣a2+﹣4a﹣2>0都成立,构造函数h(a)=2mea(a+1)﹣a2+﹣4a﹣2,根据题意得出m的范围,由h(0)>0得m>1,且h(﹣2)≥0得m≤e2,利用导函数,对m进行区间内讨论,求出m的范围.【解答】解:(I)f(x)=lnx+x2﹣2ax+1,f'(x)=+2x﹣2a=,令g(x)=2x2﹣2ax+1,(i)当a≤0时,因为x>0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;(ii)当0<a时,因为△≤0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;(iii)当a>时,x在(,)时,g(x)<0,函数f(x)单调递减;在区间(0,)和(,+∞)时,g(x)>0,函数f(x)单调递增;(II)由(I)知当a∈(﹣2,0],时,函数f(x)在区间(0,1]上单调递增,所以当x∈(0,1]时,函数f(x)的最大值是f(1)=2﹣2a,对任意的a∈(﹣2,0],都存在x0∈(0,1],使得不等式a∈(﹣2,0],2mea(a+1)+f(x0)>a2+2a+4成立,等价于对任意的a∈(﹣2,0],不等式2mea(a+1)﹣a2+﹣4a﹣2>0都成立,记h(a)=2mea(a+1)﹣a2+﹣4a﹣2,由h(0)>0得m>1,且h(﹣2)≥0得m≤e2,h'(a)=2(a+2)(mea﹣1)=0,∴a=﹣2或a=﹣lnm,∵a∈(﹣2,0],∴2(a+2)>0,①当1<m<e2时,﹣lnm∈(﹣2,0),且a∈(﹣2,﹣lnm)时,h'(a)<0,a∈(﹣lnm,0)时,h'(a)>0,所以h(a)最小值为h(﹣lnm)=lnm﹣(2﹣lnm)>0,所以a∈(﹣2,﹣lnm)时,h(a)>0恒成立;②当m=e2时,h'(a)=2(a+2)(ea+2﹣1),因为a∈(﹣2,0],所以h'(a)>0,此时单调递增,且h(﹣2)=0,所以a∈(﹣2,0],时,h(a)>0恒成立;综上,m的取值范围是(1,e2].21.设命题p:“对任意的x∈R,x2﹣2x>a”,命题q:“存在x∈R,使x2+2ax+2﹣a=0”.如果命题p∨q为真,命题p∧q为假,求实数a的取值范围.参考答案:【考点】复合命题的真假.【分析】分别求出在命题p,q下的a的取值,然后根据条件判断出p,q中一真一假,所以分别求在这两种情况下a的范围,再求并集即可.【解答】解:命题p:对任意的x∈R,x2﹣2x>a,∴x2﹣2x的最小值大于a;x2﹣2x的最小值为:﹣1;∴﹣1>a,即a<﹣1;命题q:存在x∈R,使x2+2ax+2﹣a=0;即方程x2+2ax+2﹣a=0有实根;∴△=4a2﹣4(2﹣a)≥0,解得a≤﹣2,或a≥1;∵命题p∨q为真,命题p∧q为假,∴命题p,q中一真一假;∴若p真q假:,解得﹣2<a<﹣1;若p假q真:,解得a≥1;∴实数a的取值范围为(﹣2,﹣1)∪[1,+∞).22.已知{an}为等差数列,且a3=﹣6,a6=0.(Ⅰ)求{an}的通项公式;(Ⅱ)若等比数列{bn}满足b1=﹣8,b2=a1+a2+a3,求数列{bn}的前n项和公式.参考答案:【考点】等比数列的前n项和;等差数列的通项公式.【分析】(Ⅰ)设出等差数列的公差为d,然后根据第三项为﹣6,第六项为0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论