物理速度选择器和回旋加速器专项及解析_第1页
物理速度选择器和回旋加速器专项及解析_第2页
物理速度选择器和回旋加速器专项及解析_第3页
物理速度选择器和回旋加速器专项及解析_第4页
物理速度选择器和回旋加速器专项及解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

物理速度选择器和回旋加速器专项及解析一、速度选择器和回旋加速器1.如图所示,两平行金属板AB中间有互相垂直的匀强电场和匀强磁场。A板带正电荷,B板带等量负电荷,电场强度为E;磁场方向垂直纸面向里,磁感应强度为B1。平行金属板右侧有一挡板M,中间有小孔O′,OO′是平行于两金属板的中心线。挡板右侧有垂直纸面向外的匀强磁场,磁感应强度为B2,CD为磁场B2边界上的一绝缘板,它与M板的夹角θ=45°,现有大量质量均为m,电荷量为q的带正电的粒子(不计重力),自O点沿OO′方向水平向右进入电磁场区域,其中有些粒子沿直线OO′方向运动,通过小孔O′进入匀强磁场B2,如果这些粒子恰好以竖直向下的速度打在CD板上的E点(E点未画出),求:(1)能进入匀强磁场B2的带电粒子的初速度v;(2)CE的长度L(3)粒子在磁场B2中的运动时间.【答案】(1)(2)(3)【解析】【详解】(1)沿直线OO′运动的带电粒子,设进入匀强磁场B2的带电粒子的速度为v,根据B1qv=qE解得:v=(2)粒子在磁感应强度为B2磁场中做匀速圆周运动,故:解得:r==该粒子恰好以竖直向下的速度打在CD板上的E点,CE的长度为:L===(3)粒子做匀速圆周运动的周期2.质谱仪最初由汤姆孙的学生阿斯顿设计的,他用质谱仪发现了氖20和氖22,证实了同位素的存在.现在质谱仪已经是一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具.如右图所示是一简化了的质谱仪原理图.边长为L的正方形区域abcd内有相互正交的匀强电场和匀强磁场,电场强度大小为E,方向竖直向下,磁感应强度大小为B,方向垂直纸面向里.有一束带电粒子从ad边的中点O以某一速度沿水平方向向右射入,恰好沿直线运动从bc边的中点e射出(不计粒子间的相互作用力及粒子的重力),撤去磁场后带电粒子束以相同的速度重做实验,发现带电粒子从b点射出,问:(1)带电粒子带何种电性的电荷?(2)带电粒子的比荷(即电荷量的数值和质量的比值)多大?(3)撤去电场后带电粒子束以相同的速度重做实验,则带电粒子将从哪一位置离开磁场,在磁场中运动的时间多少?【答案】(1)负电(2)(3)从dc边距离d点距离为处射出磁场;【解析】【详解】(1)正电荷所受电场力与电场强度方向相同,负电荷所受电场力与电场强度方向相反,粒子向上偏转,可知粒子带负电;(2)根据平衡条件:qE=qv0B得:撤去磁场后,粒子做类平抛运动,则有:x=v0t=L得:(3)撤去电场后带电粒子束在磁场中做匀速圆周运动,则:得:粒子从dc边射出磁场,设粒子射出磁场距离d点的距离为x,根据几何关系:r=L得:所以答:(1)带电粒子带负电;(2)带电粒子的比荷;(3)撤去电场后带电粒子束以相同的速度重做实验,则带电粒子将从dc边距离d点处离开磁场,在磁场中运动的时间.3.如图,正方形区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为。一个带电粒子(不计重力)从中点以速度水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度从中点飞入场区,最后恰能从点飞出;若仅撤去该区域内的电场,该带电粒子仍从中点以相同的速度进入场区,求:(1)该粒子最后飞出场区的位置;(2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?【答案】(1)连线上距离点处,(2)。【解析】【详解】(1)电场、磁场共存时,粒子匀速通过可得:仅有电场时,粒子水平方向匀速运动:竖直方向匀加速直线运动:联立方程得:仅有磁场时:根据几何关系可得:设粒子从M点飞出磁场,由几何关系:AM==所以粒子离开的位置在连线上距离点处;(2)仅有电场时,设飞出时速度偏角为α,末速度反向延长线过水平位移中点:解得:仅有磁场时,设飞出时速度偏角为β:解得:所以偏转角之比:。4.如图所示,两平行金属板水平放置,间距为d,两极板接在电压可调的电源上。两板之间存在着方向垂直纸面向里的匀强磁场,磁感应强度的大小为B。金属板右侧有一边界宽度为d的无限长匀强磁场区域,磁感应强度的大小为B、方向垂直纸面向里,磁场边界与水平方向的夹角为60°。平行金属板中间有一粒子发射源,可以沿水平方向发射出电性不同的两种带电粒子,改变电源电压,当电源电压为U时,粒子恰好能沿直线飞出平行金属板,粒子离开平行金属板后进入有界磁场后分成两束,经磁场偏转后恰好同时从两边界离开磁场,而且从磁场右边界离开的粒子的运动方向恰好与磁场边界垂直,粒子之间的相互作用不计,粒子的重力不计,试求:(1)带电粒子从发射源发出时的速度;(2)两种粒子的比荷和分别是多少;(3)带正电粒子在磁场中做圆周运动的轨道半径。【答案】(1)(2)(3)【解析】【详解】(1)根据题意,带电粒子在平行金属板间做直线运动时,所受电场力与洛伦兹力大小相等,由平衡条件可得q=qvB解得:v=(2)根据题意可知,带正电粒子进入磁场后沿逆时针方向运动,带负电粒子进入磁场后沿顺时针方向运动,作出粒子在磁场中的运动轨迹如图所示,带负电粒子在刚进入磁场时速度沿水平方向,离开磁场时速度方向垂直磁场边界,根据图中几何关系可知,带负电粒子在磁场中做圆周运动的偏转角为θ1=30°=带负电粒子在磁场中做圆周运动的轨道半径为:r1==2d带负电粒子在磁场中运动时洛伦兹力提供向心力,有:q1vB=联立解得:=根据带正电粒子的运动轨迹及几何关系可知,带正电粒子在磁场中的偏转角为:θ2=120°=根据带电粒子在磁场中做圆周运动的周期公式:T=可得带负电粒子在磁场中运动的时间为:t1=带正电粒子在磁场中运动的时间为:t2=根据题意可知:t1=t2联立以上各式,可得==(3)带正电粒子在磁场中做圆周运动的轨道半径为:r2=解得:r2=5.如图所示的速度选择器水平放置,板长为L,两板间距离也为L,下极板带正电,上极板带负电,两板间电场强度大小为E,两板间分布有匀强磁场,磁感强度方向垂直纸面向外,大小为B,E与B方向相互垂直.一带正电的粒子(不计重力)质量为m,带电量为q,从两板左侧中点沿图中虚线水平向右射入速度选择器.(1)若该粒子恰能匀速通过图中虚线,求该粒子的速度大小;(2)若撤去磁场,保持电场不变,让该粒子以一未知速度从同一位置水平射入,最后恰能从板的边缘飞出,求此粒子入射速度的大小;(3)若撤去电场,保持磁场不变,让该粒子以另一未知速度从同一位置水平射入,最后恰能从板的边缘飞出,求此粒子入射速度的大小.【答案】(1);(2);(3)或【解析】【分析】【详解】(1)若该粒子恰能匀速通过图中虚线,电场力向上,洛伦兹力向下,根据平衡条件,有:qv1B=qE解得:(2)若撤去磁场,保持电场不变,粒子在电场中做类平抛运动,则水平方向有:L=v2t竖直方向有:由牛顿第二定律有:qE=ma解得:(3)若粒子从板右边缘飞出,则解得:由得:若粒子从板左边缘飞出,则:由得:6.如图,平行金属板的两极板之间的距离为d,电压为U。两极板之间有一匀强磁场,磁感应强度大小为B0,方向与金属板面平行且垂直于纸面向里。两极板上方一半径为R、圆心为O的圆形区域内也存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向里。一带正电的粒子从A点以某一初速度沿平行于金属板面且垂直于磁场的方向射入两极板间,而后沿直径CD方向射入圆形磁场区域,并从边界上的F点射出。已知粒子在圆形磁场区域运动过程中的速度偏转角,不计粒子重力。求:(1)粒子初速度v的大小;(2)粒子的比荷。【答案】(1)v=(2)【解析】【详解】(1)粒子在平行金属板之间做匀速直线运动qvB0=qE①U=Ed②由①②式得v=③(2)在圆形磁场区域,粒子做匀速圆周运动,由牛顿第二定律有④由几何关系有:⑤由③④⑤式得:⑥7.在图所示的平行板器件中,电场强度和磁感应强度相互垂直.具有某一水平速度的带电粒子,将沿着图中所示的虚线穿过两板间的空间而不发生偏转,具有其他速度的带电粒子将发生偏转.这种器件能把具有某一特定速度的带电粒子选择出来,叫作速度选择器.已知粒子A(重力不计)的质量为m,带电量为+q;两极板间距为d;电场强度大小为E,磁感应强度大小为B.求:(1)带电粒子A从图中左端应以多大速度才能沿着图示虚线通过速度选择器?(2)若带电粒子A的反粒子(-q,m)从图中左端以速度E/B水平入射,还能沿直线从右端穿出吗?为什么?(3)若带电粒子A从图中右端两极板中央以速度E/B水平入射,判断粒子A是否能沿虚线从左端穿出,并说明理由.若不能穿出而打在极板上.请求出粒子A到达极板时的动能?【答案】(1)E/B(2)仍能直线从右端穿出,由(1)可知,选择器(B,E)给定时,与粒子的电性、电量无关.只与速度有关(3)不可能,【解析】试题分析:,电场的方向与B的方向垂直,带电粒子进入复合场,受电场力和安培力,且二力是平衡力,即Eq=qvB,即可解得速度.仍能直线从右端穿出,由(1)可知,选择器(B,E)给定时,与粒子的电性、电量无关.只与速度有关.(1)带电粒子在电磁场中受到电场力和洛伦兹力(不计重力),当沿虚线作匀速直线运动时,两个力平衡,即Eq=Bqv解得:(2)仍能直线从右端穿出,由(1)可知,选择器(B,E)给定时,与粒子的电性、电量无关.只与速度有关.(3)设粒子A在选择器的右端入射是速度大小为v,电场力与洛伦兹力同方向,因此不可能直线从左端穿出,一定偏向极板.设粒子打在极板上是的速度大小为v′.由动能定理得:因为E=Bv联立可得粒子A到达极板时的动能为:点睛:本题主要考查了从速度选择器出来的粒子电场力和洛伦兹力相等,粒子的速度相同,速度选择器只选择速度,不选择电量与电性,同时要结合功能关系分析.8.如图,在整个直角坐标系xoy区域存在方向沿y轴负方向的匀强电场,场强大小为E;在x>0区域还存在方向垂直于xoy平面向内的匀强磁场。一质量为m、电荷量为q的带正电粒子从x轴上x=-L的A点射出,速度方向与x轴正方向成45°,粒子刚好能垂直经过y轴,并且在第一象限恰能做直线运动,不计粒子重力(1)求粒子经过y轴的位置(2)求磁感应强度B的大小(3)若将磁场的磁感应强度减小为原来的一半,求粒子在x>0区域运动过程中的最大速度和最低点的y坐标。【答案】(1)y=L(2)(3)【解析】【分析】(1)粒子在第二象限做类平抛运动,根据平抛运动的规律求解粒子经过y轴的位置;(2)粒子在第一象限恰能做直线运动,则电场力等于洛伦兹力,可求解B;(3)将x>0区域的曲线运动看做以2v1的匀速直线运动和以v1的匀速圆周运动的合成,结合直线运动和圆周运动求解最大速度和最低点坐标。【详解】(1)粒子在第二象限做类平抛运动,设初速度为v,L=v1t联立解得,则经过y轴上的位置;(2)v2=at可得qv1B=qE解得(3)将x>0区域的曲线运动看做以2v1的匀速直线运动和以v1的匀速圆周运动的合成,如图;解得最低点y坐标为此时速度最大为vm=2v1+v1解得9.1897年,汤姆孙根据阴极射线在电场和磁场中的偏转情况断定,它的本质是带负电的粒子流并求出了这种粒子的比荷,图为汤姆孙测电子比荷的装置示意图。在真空玻璃管内,阴极K发出的电子经阳极A与阴极K之间的高电压加速后,形成细细的一束电子流,沿图示方向进入两极板C、D间的区域。若两极板C、D间无电压,电子将打在荧光屏上的O点,若在两极板间施加电压U,则离开极板区域的电子将打在荧光屏上的P点;若再在极板间施加磁感应强度大小为B的匀强磁场,则电子在荧光屏上产生的光点又回到O点,已知极板的长度L1=5.00cm,C、D间的距离d=1.50cm,极板的右端到荧光屏的距离L2=10.00cm,U=200V,B=6.3×10-4T,P点到O点的距离Y=3.0cm。求:(1)判断所加磁场的方向;(2)电子经加速后射入极板C、D的速度v;(3)电子的比荷(结果保留三位有效数字)。【答案】(1)磁场方向垂直纸面向外(2)v=2.12×107m/s(3)=1.61×1011C/kg【解析】【详解】(1)由左手定则可知磁场方向垂直纸面向外;(2)当电子受到的电场力与洛伦兹力平衡时,电子做匀速直线运动,亮点重新回复到中心O点,设电子的速度为,则evB=eE得即代入数据得v=2.12×107m/s(3)当极板间仅有偏转电场时,电子以速度进入后,竖直方向作匀加速运动,加速度为电子在水平方向作匀速运动,在电场内的运动时间为这样,电子在电场中,竖直向下偏转的距离为离开电场时竖直向下的分速度为电子离开电场后做匀速直线运动,经t2时间到达荧光屏t2时间内向上运动的距离为这样,电子向上的总偏转距离为可解得代入数据得=1.61×1011C/kg【点睛】本题是组合场问题:对速度选择器,根据平衡条件研究;对于类平抛运动的处理,通常采用运动的分解法律:将运动分解成相互垂直的两方向运动,将一个复杂的曲线运动分解成两个简单的直线运动,并用牛顿第二定律和运动学公式来求解.10.1932年美国物理学家劳伦斯发明了回旋加速器,巧妙地利用带电粒子在磁场中运动特点,解决了粒子的加速问题。现在回旋加速器被广泛应用于科学研究和恢学设备中。回旋加速器的工作原理如图甲所,置于真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B的匀强磁场与盒面垂直,加速器按一定频率的高频交流电源,保证粒子每次经过电场都被加速,加速电压为U。D形金属盒中心粒子源产生的粒子,初速度不计,在加速器中被加速,加速过程中不考虑相对论效应和重力作用。(1)求把质量为m、电荷量为q的静止粒子加速到最大动能所需时间;(2)若此回旋加速器原来加速质量为2m,带电荷量为q的α粒子(),获得的最大动能为Ekm,现改为加速氘核(),它获得的最大动能为多少?要想使氘核获得与α粒子相同的动能,请你通过分析,提出一种简单可行的办法;(3)已知两D形盒间的交变电压如图乙所示,设α粒子在此回旋加速器中运行的周期为T,若存在一种带电荷量为q′、质量为m′的粒子,在时进入加速电场,该粒子在加速器中能获得的最大动能?(在此过程中,粒子未飞出D形盒)【答案】(1);(2),见解析;(3)【解析】【分析】【详解】(1)由洛伦兹力提供向心力得粒子每旋转一周动能增加2qU,则旋转周数周期粒子在磁场中运动的时间一般地可忽略粒子在电场中的运动时间,t磁可视为总时间(2)对α粒子,由速度得其最大动能为对氘核,最大动能为若两者有相同的动能,设磁感应强度变为B′、由α粒子换成氘核,有解得,即磁感应强度需增大为原来的倍高频交流电源的原来周期故由α粒子换为氘核时,交流电源的周期应为原来的(3)对粒子分析,其在磁场中的周期每次加速偏移的时间差为加速次数所以获得的最大动能11.劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图所示。置于真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可忽略。磁感应强度为B的匀强磁场与盒面垂直,高频交流电频率为f,加速电压为U。若A处粒子源产生的质子的质量为m、电荷量为+q,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响。则下列说法正确的是()A.质子被加速后的最大速度不可能超过2πRfB.质子离开回旋加速器时的最大动能与加速电压U成正比C.质子第2次和第1次经过两D形盒间狭缝后轨道半径之比为∶1D.不改变磁感应强度B和交流电频率f,该回旋加速器也能用于a粒子加速【答案】AC【解析】【详解】A.质子出回旋加速器的速度最大,此时的半径为R,则:所以最大速度不超过2πfR。故A正确。B.根据洛伦兹力提供向心力:,解得:最大动能:,与加速的电压无关。故B错误。C.粒子在加速电场中做匀加速运动,在磁场中做匀速圆周运动,根据,可得质子第2次和第1次经过D形盒狭缝的速度比为,根据,可得半径比为。故C正确。D.回旋加速器交流电的频率与粒子转动频率相等,即为,可知比荷不同的粒子频率不同,不改变磁感应强度B和交流电频率f,有可能起不到加速作用。故D错误。故选AC。12.回旋加速器是用来加速一群带电粒子使它们获得很大动能的仪器,其核心部分是两个D形金属扁盒,两盒分别和一高频交流电源两极相接,以便在盒内的狭缝中形成匀强电场,使粒子每次穿过狭缝时都得到加速,两盒放在磁感应强度为B的匀强磁场中,磁场方向垂直于盒底面,粒子源置于盒的圆心附近,若粒子源射出的粒子电荷量为q,质量为m,粒子最大回旋半径为R.忽略粒子在电场中运动的时间.求:(1)所加交变电流的频率f;(2)粒子离开加速器时的最大速度v;(3)若加速的电压为U,求粒子达到最大速度被加速的次数n.【答案】(1)(2)(3)【解析】【详解】(1)粒子在电场中运动时间极短,因此高频交变电流频率要等于粒子回旋频率,因为,回旋频率;(2)由牛顿第二定律,解得;(3)获得的能量来源于电场的加速,故:,解得;13.诺贝尔物理学奖得主劳伦斯发明了回旋加速器,其原理可简化如下.如图所示,两个中空的半径R=0.125m的半圆金属盒,接在电压U=5000V、频率恒定的交流电源上;两盒狭缝之间距离d=0.01m,金属盒面与匀强磁场垂直,磁感应强度B=0.8T.位于圆心处的质子源能不断产生质子(初速度可以忽略,重力不计,不计质子间的相互作用),质子在狭缝之间能不断被电场加速,最后通过特殊装置引出.已知质子的比荷C/kg,求:(1)质子能获得的最大速度;(2)质子在电场加速过程中获得的平均功率;(3)随轨道半径r的增大,同一盒中相邻轨道的半径之差Δr如何变化?简述理由.(4)设输出时质子束形成的等效电流为100mA,回旋加速器输出功率是多大?【答案】(1)(2)(3)Δr逐渐减小(4)P=5000W【解析】【详解】(1)粒子在磁场中回旋,有引出时有r=R,得m/s(2)引出前质子(在电场中)加速的次数质子在电场中多次加速,可等效为一次性做匀加速直线运动该过程中的平均速度为v/2,则平均功率(3)粒子回旋半径,设加速一次后的速度为v1,加速三次后的速度为v3,则有,……,由此,因为,故Δr逐渐减小(4)研究出口处截面Δt→0时间内的质子,设有N个,则N·q=I·Δt在该时间内,回旋加速器做的功等效于把N个质子从静止加速到即,代入得P=5000W14.如图1所示为回旋加速器的示意图.它由两个铝制D型金属扁盒组成,两个D形盒正中间开有一条狭缝,两个D型盒处在匀强磁场中并接在高频交变电源上.在盒中心A处有离子源,它产生并发出的粒子,经狭缝电压加速后,进入盒中.在磁场力的作用下运动半个圆周后,再次经狭缝电压加速.为保证粒子每次经过狭缝都被加速,设法使交变电压的周期与粒子在狭缝及磁场中运动的周期一致如.此周而复始,速度越来越大,运动半径也越来越大,最后到达D型盒的边缘,以最大速度被导出.已知粒子电荷量为q质量为m,加速时电极间电压大小恒为U,磁场的磁感应强度为B,D型盒的半径为R.设狭缝很窄,粒子通过狭缝的时间可以忽略不计,且粒子从离子源发出时的初速度为零.(不计粒子重力)求:(1)粒子第1次由盒进入盒中时的速度大小;(2)粒子被加速后获得的最大动能;(3)符合条件的交变电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论