多边形的内角和课件_第1页
多边形的内角和课件_第2页
多边形的内角和课件_第3页
多边形的内角和课件_第4页
多边形的内角和课件_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、填空:如图,此多边形应记作

边形

,AB边的邻边是

,顶点E处的内角为

,过顶点A画出这个多边形的对角线,共有

条,它们把多边形分成

个三角形。2、n边形有

个顶点,

条边,有

个角,有

个不同顶点的外角.3、四边形有

条对角线。五边形有

条对角线。4、四边形的一条对角线将它分成

个三角形.5、从六边形的一个顶点出发可以画

条对角线,它们将六边形分成

个三角形.6、正多边形的

相等,

相等.7、多边形分为

两类.五ABCDEAEBC∠AED23nnnn25243边凸多边形凹多边形角第一页第二页,共36页。布局精巧玄妙,从高空俯视,全村呈八卦形,房屋、街巷的分布走向恰好与历史上写的诸葛亮九宫八卦阵暗合。想一想浙江金华兰溪诸葛八卦村你能算出八卦图的内角和吗?第二页第三页,共36页。你能算它的内角和吗?第三页第四页,共36页。它们的内角和该怎么计算呢?其他多边形的内角和呢?想一想第四页第五页,共36页。你知道长方形和正方形的内角和是多少?其它四边形的内角和是多少?你还记得三角形内角和是多少度?(三角形内角和

180°)(都是360°)让我们从简单的多边形的内角和开始探索!Why?第五页第六页,共36页。ABCD四边形内角和第六页第七页,共36页。那么如何求此五边形的内角和呢?选捷径,我能行!3×180°

=5400

说说你的

探索思路?第七页第八页,共36页。ABCDE

三角形

四边形

五边形

1800

2×180°=

3600

3×180°

=5400

探索过程一掠:ACBABCD第八页第九页,共36页。六边形

七边形4×180°

=7200

5×180°

=9000

那么六边形、七边形的内角和呢?第九页第十页,共36页。内角和三角形个数从一个顶点引出对角线数边数56233×180°=540°

............344×180°=720°(n-2)×180°nn-3n-275×180°=900°

45第十页第十一页,共36页。综上所述,设多边形的边数为n,则n边形的内角和等于(n一2)•180°第十一页第十二页,共36页。PABCD图1如图1,在四边形内任取一点P,连接PA、PB、PC、PD将四边形变成有一个公共顶点的四个三角形,四边形内角和等于180°×4-360°=360°PABDC图2如图2,在四边形的一边上任取一点P,连接PB、PC,将四边形变成有一个公共顶点的三个三角形,四边形内角和等于180°×3-180°=360°PABCD图3如图3,在四边形外任取一点P,连接PA、PB、PC、PD将四边形变成有一个公共顶点的四个三角形,四边形内角和等于180°×3-180°=360°百家争鸣其他方法其他方案第十二页第十三页,共36页。我们也可以利用以上不同的方法分割多边形,得到n边形的内角和公式ppp照猫画虎第十三页第十四页,共36页。

n边形内角和等于最终结论(n-2)×180°第十四页第十五页,共36页。2、已知一个多边形每个内角都等108°

,求这个多边形的边数?解:设这个多边形的边数为n,根据题意得:(n-2)×180=108n解得:n=5

答:这个多边形是五边形。1、八边形的内角和等于多少度?十边形呢?(8-2)×180°=1080°(10-2)×180°=1440°抢答第十五页第十六页,共36页。那么正五边形、正六边形、正八边形、正n边形的每个内角分别是多少度呢?

……正n边形(5-2)×180°5=108°(6-2)×180°6=120°(8-2)×180°8=135°(n-2)×180°nNowIcan……第十六页第十七页,共36页。解:如图四边形ABCD中,ABCD例1、如果一个四边形的一组对角互补,那么另一组对角有什么关系?这就是说,如果四边形的一组对角互补,那么另一组对角也互补。典型例题第十七页第十八页,共36页。(2)他每跑完一圈,身体转过的角度之和是多少?(3)在上图中,你能求出

1+

2+

3+

4+

5=吗?你是怎样得到的?(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?

清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。第十八页第十九页,共36页。ABCDE12345结论:

1,

2,

3,

4,

5的和等于360度。第十九页第二十页,共36页。多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。那么多边形的外角和是多少呢?如果广场的形状是六边形、八边形,那么还有类似的结论吗?多边形的外角和第二十页第二十一页,共36页。A3A8AnA1A2A7A5A6A4各抒己见多边形的外角和等于360ْ多边形外角与内角有何关系?还有其他方法可以推导出多边形外角和?

多边形的任何一个内角加上与它相邻的内角都等于180°(平角),n个外角连同它们的各自相邻的内角,共有n个180°,总和为n×180°

,再用它减去n个内角的和,剩下的就是多边形的外角和了!第二十一页第二十二页,共36页。

例1.已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数。

解:设多边形的边数为n∵它的内角和等于(n-2)•180°,多边形外角和等于360º,∴(n-2)•180°=2×

360º。解得:n=6

这个多边形的边数为6。第二十二页第二十三页,共36页。

例2.一个多边形当边数增加1时,它的内角和增加多少度?

解:设多边形的边数为n,∵它的内角和等于(n-2)•180°,当边数增加1时,内角和为(n+1-2)•180°,

(n+1-2)•180°-(n-2)•180°=n•180°-180°-n•180°+360°=180°

内角和增加180°外角和呢?边数增加2或3呢?第二十三页第二十四页,共36页。解;设五边形中前四个角的度数分别是x,2x,3x,4x,则第五个角度数是x+100°.X+2x+3x+4x+x+100°=(5-2)×180°11X+100°=540°11X=440°X=40°则这个五边形的内角分别为40,80°,120°,160°,140°.例3.五边形中,前四个角的比是1:2:3:4,第五个角比最小角多100°,则这个五边形的内角分别为_____第二十四页第二十五页,共36页。1.正五边形的每一个外角等于___.每一个内角等于_____,72°144°2.如果一个正多边形的一个内角等于120°,则这个多边形的边数是_____63.如果一个多边形的每一个外角等于30°,则这个多边形的边数是_____12随堂练习第二十五页第二十六页,共36页。今天的收获3、n边形的内角和等于:(n-2)×180°

2、n边形从一个顶点所画对角线的条数为:n-3

4、利用类比归纳、转化的学习方法,可以把多边形问题转化为三角形问题来解决;

5、方程的数学思想在几何中有重要的作用。

1、由n条不在同一直线上的线段首尾顺次连结组成的平面图形称为n边形,又称为多边形。第二十六页第二十七页,共36页。课后思考1、一天小明爸爸给小明出了一道智力题考考他。将一个多边形截去一个角后(没有过顶点)得到多边形的内角和将会()

A、不变B、增加180°

C、减少180°D、无法确定第二十七页第二十八页,共36页。探索与创新如果把多边形的边数增加1条,它的内角和是2160°,那么这个多边形的边数是

。一个多边形除了一个内角外,其余各角的和为600°,那么除去的这个角的度数是

这个多边形是

边形。13120°六第二十八页第二十九页,共36页。1.已知四边形ABCD中,∠A与∠C互补.如果∠B=80°,则∠D的度数是

.2.某四边形四个内角的度数之比为1:2:3:3,这四个内角的度数分别是

.

3.在四边形ABCD中,已知∠A=85°∠C=115°∠B比∠D大20°,则∠B的度数是,∠D的度数是

.

交一份满意的答卷!100°40°,80°,120°,120°90°70°第二十九页第三十页,共36页。练一练:已知在四边形ABCD中,∠A=90°∠C=90°,BE平分∠ABC,交CD于点E,DF平分∠ADC,交AB于点F.求证:BE∥DF.ABCDEF第三十页第三十一页,共36页。4.若一个n边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3∶1,那么,这个多边形的边数为________.5.若一个十边形的每个外角都相等,则它的每个外角的度数为________,每个内角的度数为________.6.若一个凸多边形的内角和等于它的外角和,则它的边数是_________.7.如果一个多边形的每一个外角都相等,并且它的内角和为2880°,那么它的内角为_________.第三十一页第三十二页,共36页。练习1、若多边形的外角和与内角和之比为2∶9,求这个多边形的边数及内角和。2、一个多边形中的各内角相等,且每个内角与外角之差的绝对值为60°,求此多边形的边数。3、已知多边形的一个内角的外角与其它各内角的度数总和为600°,求边数.4、如果多边形的每个内角都比它相邻的外角的4倍还多30°,求这个多边形的内角和及对角线的总条数.第三十二页第三十三页,共36页。

练习:已知一个多边形的每一个外角都等于36

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论