2024届江苏省无锡市西漳中学八上数学期末监测试题含解析_第1页
2024届江苏省无锡市西漳中学八上数学期末监测试题含解析_第2页
2024届江苏省无锡市西漳中学八上数学期末监测试题含解析_第3页
2024届江苏省无锡市西漳中学八上数学期末监测试题含解析_第4页
2024届江苏省无锡市西漳中学八上数学期末监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省无锡市西漳中学八上数学期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,∠ABC=∠ACB,AD、BD分别平分△ABC的外角∠EAC、内角∠ABC,以下结论:①AD∥BC;②∠ACB=2∠ADB;③BD⊥AC;④AC=AD.其中正确的结论有()A.①② B.①②④ C.①②③ D.①③④2.一次函数的与的部分对应值如下表所示,根据表中数值分析.下列结论正确的是()A.随的增大而增大B.是方程的解C.一次函数的图象经过第一、二、四象限D.一次函数的图象与轴交于点3.如图是一张直角三角形的纸片,两直角边,现将折叠,使点与点重合,折痕为,则的长为()A. B. C. D.4.如图所示,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他根据的定理是()A.SSS B.SAS C.AAS D.ASA5.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为Pn,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)6.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读数情况,随机调查了50名学生的册数,统计数据如表所示:则这50名学生读数册数的众数、中位数是()册数

0

1

2

3

4

人数

3

13

16

17

1

A.3,3 B.3,2 C.2,3 D.2,27.如果点(m﹣1,﹣1)与点(5,﹣1)关于y轴对称,则m=()A.4 B.﹣4 C.5 D.﹣58.如图,在四边形中,,在上分别找到点M,N,当的周长最小时,的度数为()A.118° B.121° C.120° D.90°9.如图,点A,D,C,F在一条直线上,AB=DE,∠A=∠EDF,补充下列条件不能证明△ABC≌△DEF的是()A.AD=CF B.BC∥EF C.∠B=∠E D.BC=EF10.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.HL B.SAS C.AAS D.SSS二、填空题(每小题3分,共24分)11.如果是方程5x+by=35的解,则b=_____.12.一根木棒能与长为和的两根木棒钉成一个三角形,则这根木棒的长度的取值范围是____________.13.甲、乙俩射击运动员进行10次射击,甲的成绩是7,7,8,9,8,9,10,9,9,9,乙的成绩如图所示.则甲、乙射击成绩的方差之间关系是(填“<”,“=”,“>”).14.若为三角形的三边,且满足,第三边为偶数,则=__________.15.如图,中,于D,要使,若根据“”判定,还需要加条件__________16.己知a2-3a+1=0,则数式(a+1)(a-4)的值为______。17.如图,中,,,,在上截取,使,过点作的垂线,交于点,连接,交于点,交于点,,则____________.18.分式的最简公分母为_____.三、解答题(共66分)19.(10分)已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.(发现)(1)如图1,若∠ABC=∠ADC=90°,则∠BCD=°,△CBD是三角形;(探索)(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;(应用)(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有.(只填序号)①2个

②3个

③4个

④4个以上20.(6分)如图,,,(1)求证:;(2)连接,求证:.21.(6分)计算或因式分解:(1)计算:(a2-4)÷;(2)因式分解:a(n-1)2-2a(n-1)+a.22.(8分)计算下列各题:(1);(2).23.(8分)定义:如果一个数的平方等于,记为,那么这个数叫做虚数单位,和我们所学的实数对应起来的数就叫做复数,表示为(为实数),叫做这个复数的实部,叫做这个复数的虚部,复数的加、减、乘法运算与整式的加、减、乘法运算类似.例如,计算:(1)填空:_______,_______;(2)计算:24.(8分)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y元.(1)求y关于x的函数解析式;(2)若农户王大伯一次购买该种子花费了420元,求他购买种子的数量.25.(10分)为了预防“流感”,某学校在休息日用“药熏”消毒法对教室进行消毒.已知药物释放过程中,室内每立方米的含药量y(毫克)与时间x(时)成正比例;药物释放结束后,y与x成反比例;如图所示,根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数解析式;(2)据测定,当药物释放结束后,每立方米的含药量降至0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多长时间,学生才能进入教室?26.(10分)如图,把长方形纸片放入平面直角坐标系中,使分别落在轴的的正半轴上,连接,且,.(1)求点的坐标;(2)将纸片折叠,使点与点重合(折痕为),求折叠后纸片重叠部分的面积;(3)求所在直线的函数表达式,并求出对角线与折痕交点的坐标.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质进而解答即可.【题目详解】解:∵AD平分∠EAC,

∴∠EAC=2∠EAD,

∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,

∴∠EAD=∠ABC,

∴AD∥BC,∴①正确;

∵AD∥BC,

∴∠ADB=∠DBC,

∵BD平分∠ABC,∠ABC=∠ACB,

∴∠ABC=∠ACB=2∠DBC,

∴∠ACB=2∠ADB,∴②正确;

∵BD平分∠ABC,∠ABC=∠ACB,

∵∠ABC+∠ACB+∠BAC=180°,

当∠BAC=∠C时,才有∠ABD+∠BAC=90°,故③错误;

∵∠ADB=∠ABD,

∴AD=AB,

∴AD=AC,故④正确;

故选:B.【题目点拨】本题考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考察学生的推理能力,有一定的难度.2、C【分析】根据待定系数法求出一次函数解析式,再根据一次函数的图像与性质即可求解.【题目详解】把(0,2)、(1,-1)代入得解得∴一次函数解析式为y=-3x+2∵k=-3<0,∴随的增大而减小,故A错误;把代入,故B错误;一次函数y=-3x+2的图象经过第一、二、四象限,故C正确;令y=0,-3x+2=0,解得x=,一次函数y=-3x+2的图象与轴交于点,故D错误,故选C.【题目点拨】此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法的应用.3、B【分析】首先设AD=xcm,由折叠的性质得:BD=AD=xcm,又由BC=8cm,可得CD=8-x(cm),然后在Rt△ACD中,利用勾股定理即可求得方程,解方程即可求得答案.【题目详解】设AD=xcm,由折叠的性质得:BD=AD=xcm,∵在Rt△ABC中,AC=6cm,BC=8cm,∴CD=BC-BD=(8-x)cm,在Rt△ACD中,AC2+CD2=AD2,即:62+(8-x)2=x2,解得:x=,∴AD=cm.故选:B.【题目点拨】此题考查了折叠的性质与勾股定理的知识.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意掌握折叠前后图形的对应关系.4、D【分析】根据图形,未污染的部分两角与这两角的夹边可以测量,然后根据全等三角形的判定方法解答即可.【题目详解】解:小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他根据的定理是:两角及其夹边分别相等的两个三角形全等(ASA).故选:D.【题目点拨】本题考查了全等三角形的判定,掌握三角形全等的判定是解题的关键.5、D【分析】根据轴对称的性质分别写出点P1的坐标为、点P2的坐标、点P3的坐标、点P4的坐标,从中找出规律,根据规律解答.【题目详解】解:由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.【题目点拨】本题主要考查了点的坐标、坐标与图形变化−−对称,正确找出点的坐标的变化规律是解题的关键.6、B【解题分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是1,故这组数据的众数为1.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).∴中位数是按第25、26名学生读数册数的平均数,为:2.故选B.7、B【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列出方程求解即可.【题目详解】解:∵点(m﹣1,﹣1)与点(5,﹣1)关于y轴对称,∴m﹣1=﹣5,解得m=﹣1.故选:B.【题目点拨】本题考查了关于y轴对称的点的坐标特征,掌握关于y轴对称的点的坐标特征是横坐标互为相反数是解题的关键.8、A【分析】如图,作A关于和的对称点,,连接,交于M,交于N,则的长度即为周长的最小值.根据,得出.根据,,且,,可得,即可求出答案.【题目详解】如图,作A关于和的对称点,,连接,交于M,交于N,则的长度即为周长的最小值.∵,∴.∵,,且,,∴.故选:A.【题目点拨】本题考查两角度数和的求法,考查三角形性质的应用,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.9、D【分析】利用全等三角形的判定方法即可判断.【题目详解】解:∵AB=DE,∠A=∠EDF,∴只要AC=DF即可判断△ABC≌△DEF,∵当AD=CF时,可得AD+DC=DC+CF,即AC=DF,当BC∥EF时,∠ACB=∠F,可以判断△ABC≌△DEF,当∠B=∠E时,可以判断△ABC≌△DEF,故选:D.【题目点拨】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.10、A【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.【题目详解】解:在Rt△OMP和Rt△ONP中,

∴Rt△OMP≌Rt△ONP(HL),

∴∠MOP=∠NOP,

∴OP是∠AOB的平分线.

故选择:A.【题目点拨】本题考查了全等三角形的应用以及基本作图,熟练掌握三角形全等的判定方法并读懂题目信息是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】由方程的解与方程的关系,直接将给出的解代入二元一次方程即可求出b.【题目详解】解:∵是方程5x+by=35的解,∴3×5+2b=35,∴b=1,故答案为1.【题目点拨】本题考查方程的解与方程的关系,解题的关键是理解并掌握方程的解的意义:能使方程左右两边的值都相等.12、5<<13【分析】设这根木棒的长度为,根据在三角形中,任意两边之和大于第三边,得<4+9=13,任意两边之差小于第三边,得>9-4=5,所以这根木棒的长度为5<<13.【题目详解】解:这根木棒的长度的取值范围是9-4<<9+4,即5<<13.故答案为5<<13.【题目点拨】本题考查了三角形得三边关系.在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.13、<【分析】从折线图中得出乙的射击成绩,再利用方差的公式计算,最后进行比较即可解答.【题目详解】由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9,乙的成绩为8,9,7,10,7,9,10,7,10,8,甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85,乙的方差S乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.35∴S2甲<S2乙.【题目点拨】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14、3【分析】先根据非负数的性质求出a和b的值,再根据三角形三边关系求出c的取值范围,进而求出c的值.【题目详解】∵a、b满足(b﹣1)1=0,∴a=3,b=1.∵a、b、c为三角形的三边,∴8<c<11.∵第三边c为偶数,∴c=3.故答案为:3.【题目点拨】本题考查了三角形三边关系以及非负数的性质,解答本题的关键是求出a和b的值,此题难度不大.15、AB=AC【解题分析】解:还需添加条件AB=AC.∵AD⊥BC于D,∴∠ADB=∠ADC=90°.在Rt△ABD和Rt△ACD中,∵AB=AC,AD=AD,∴Rt△ABD≌Rt△ACD(HL).故答案为AB=AC.16、-5【分析】先化简数式(a+1)(a-4),再用整体代入法求解即可.【题目详解】∵a2-3a+1=0,∴a2-3a=-1,(a+1)(a-4)=a2-3a-4=-1-4=-5【题目点拨】熟练掌握整式化简及整体代入法是解决本题的关键.17、【解题分析】过点D作DM⊥BD,与BF延长线交于点M,先证明△BHE≌△BGD得到∠EHB=∠DGB,再由平行和对顶角相等得到∠MDG=∠MGD,即MD=MG,在△△BDM中利用勾股定理算出MG的长度,得到BM,再证明△ABC≌△MBD,从而得出BM=AB即可.【题目详解】解:∵AC∥BD,∠ACB=90°,∴∠CBD=90°,即∠1+∠2=90°,又∵BF⊥AB,∴∠ABF=90°,即∠8+∠2=90°,∵BE=BD,∴∠8=∠1,在△BHE和△BGD中,,∴△BHE≌△BGD(ASA),∴∠EHB=∠DGB∴∠5=∠6,∠6=∠7,∵MD⊥BD∴∠BDM=90°,∴BC∥MD,∴∠5=∠MDG,∴∠7=∠MDG∴MG=MD,∵BC=7,BG=4,设MG=x,在△BDM中,BD2+MD2=BM2,即,解得x=,在△ABC和△MBD中,∴△ABC≌△MBD(ASA)AB=BM=BG+MG=4+=.故答案为:.【题目点拨】本题考查了全等三角形的判定和性质,勾股定理,适当添加辅助线构造全等三角形,利用全等三角形的性质求出待求的线段,难度中等.18、10xy2【解题分析】试题解析:分母分别是故最简公分母是故答案是:点睛:确定最简公分母的方法是:

(1)取各分母系数的最小公倍数;

(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;

(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.三、解答题(共66分)19、(1)60,等边;(2)等边三角形,证明见解析(3)④.【分析】(1)利用四边形的内角和即可得出∠BCD的度数,再利用角平分线的性质定理即可得出CB,即可得出结论;(2)先判断出∠CDE=∠ABC,进而得出△CDE≌△CFB(AAS),得出CD=CB,再利用四边形的内角和即可得出∠BCD=60°即可得出结论;(3)先判断出∠POE=∠POF=60°,先构造出等边三角形,找出特点,即可得出结论.【题目详解】(1)如图1,连接BD,∵∠ABC=∠ADC=90°,∠MAN=120°,根据四边形的内角和得,∠BCD=360°-(∠ABC+∠ADC+∠MAN)=60°,∵AC是∠MAN的平分线,CD⊥AM.CB⊥AN,∴CD=CB,(角平分线的性质定理),∴△BCD是等边三角形;故答案为60,等边;(2)如图2,同(1)得出,∠BCD=60°(根据三角形的内角和定理),过点C作CE⊥AM于E,CF⊥AN于F,∵AC是∠MAN的平分线,∴CE=CF,∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,∴∠CDE=∠ABC,在△CDE和△CFB中,,∴△CDE≌△CFB(AAS),∴CD=CB,∵∠BCD=60°,∴△CBD是等边三角形;(3)如图3,∵OP平分∠EOF,∠EOF=120°,∴∠POE=∠POF=60°,在OE上截取OG'=OP=1,连接PG',∴△G'OP是等边三角形,此时点H'和点O重合,同理:△OPH是等边三角形,此时点G和点O重合,将等边△PHG绕点P逆时针旋转到等边△PG'H',在旋转的过程中,边PG,PH分别和OE,OF相交(如图中G'',H'')和点P围成的三角形全部是等边三角形,(旋转角的范围为(0°到60°包括0°和60°),所以有无数个;理由:同(2)的方法.故答案为④.20、(1)证明见解析;(2)证明见解析.【分析】(1)由,则∠AED=∠BEC,即可证明△ADE≌△BCE,即可得到AD=BC;(2)连接DC,由(1)得,,则,再根据,即可得到答案.【题目详解】(1)证明:∵∴在和中,∵∴≌(),∴;(2)如图,连接,由≌,得,∵,∴,∵,∴.【题目点拨】本题考查了全等三角形的判定与性质,以及等腰三角形性质,正确找出三角形全等的条件是解题的关键.21、(1)原式=a2-2a;(2)原式=a(n-2)2.【解题分析】试题分析:(1)先把括号内的进行因式分解,然后把除法转化成乘法进行约分即可得解;(2)首先提取公因式a,再利用完全平方公式分解因式得出答案.试题解析:(1)原式=(a+2)(a-2)=a(a-2)=a2-2a;(2)原式=a[(n-1)2-2(n-1)+1]=a(n-1-1)2=a(n-2)2.22、(1)-20;(2)x-y【分析】(1)根据乘方的意义、负指数幂的性质、零指数幂的性质、算术平方根的定义和绝对值的定义计算即可;(2)根据平方差公式、完全平方公式和多项式除以单项式法则计算即可.【题目详解】解:(1)===(2)====x-y【题目点拨】此题考查的是实数的混合运算和整式的混合运算,掌握乘方的意义、负指数幂的性质、零指数幂的性质、算术平方根的定义、绝对值的定义、平方差公式、完全平方公式和多项式除以单项式法则是解决此题的关键.23、(1),1;(2)【分析】(1)由已知定义可得:,所求式子可化为:,,代入运算即可得答案;(2)将原式用完全平方公式展开,然后代入即可得到答案.【题目详解】(1);.故答案为:;1.(2).【题目点拨】本题主要考查了新概念类的运算问题,熟练掌握整式的运算公式将原式变形再代入新概念进行运算是解题的关键.24、(1)①当0≤x≤5时,y=20x;②当x>5时,y=16x+20;(2)1千克【分析】(1)分情况求解:①购买量不超5千克时,付款金额=20×购买量;②购买量超过5千克时,付款金额=20×5+20×0.8×(购买量-5);(2)由于花费的钱数超过5×20=100元,所以需要把y=420代入(1)题的第二个关系式,据此解答即可.【题目详解】解:(1)根据题意,得:①当0≤x≤5时,y=20x;②当x>5时,y=20×0.8(x﹣5)+20×5=16x+20;(2)把y=420代入y=16x+20得,16x+20=420,解得:x=1.∴他购买种子的数量是1千克.【题目点拨】本题考查了一次函数的应用,属于常见题型,正确理解题意、熟练掌握一次函数的基本知识是解题关键.25、(1)y=;(2)从药物释放开始,至少需要经过8小时,学生才能进入教室.【分析】(1)首先根据题意,已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(小时)成正比;药物释放完毕后,y与x成反比例,将数据代入用待定系数法可得反比例函数的关系式;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论