版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四节直线、平面垂直的判定与性质考试要求:1.能以立体几何中的定义、基本事实和定理为出发点,认识和理解空间中线面垂直的有关性质和判定定理.2.能运用基本事实、定理和已获得的结论证明一些有关空间图形中垂直关系的简单命题.一、教材概念·结论·性质重现1.直线与平面垂直(1)定义:一般地,如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做垂足.“任意一条直线”与“所有直线”是同义的,但与“无数条直线”不同,定义的实质是直线与平面内的所有直线都垂直.(2)判定定理与性质定理文字语言图形语言符号语言判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直a性质定理垂直于同一个平面的两条直线平行a⊥αb⊥线面垂直的判定定理中平面内的两条直线必须是相交的.2.平面与平面垂直(1)定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理文字语言图形语言符号语言判定定理如果一个平面过另一个平面的垂线,那么这两个平面垂直l⊥αl⊂性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直α⊥βl⊂面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可.3.线面角与二面角(1)直线与平面所成的角(线面角)①平面的一条斜线和它在平面上的射影所成的角,叫做这条直线和这个平面所成的角.②特例:若一条直线垂直于平面,它们所成的角是90°.若一条直线和平面平行,或在平面内,它们所成的角是0°.③直线与平面所成的角θ的取值范围是:0°≤θ≤90°.(2)二面角①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角.③二面角的平面角的范围:0°≤θ≤180°.4.常用结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.二、基本技能·思想·活动经验1.判断下列说法的正误,对的画“√”,错的画“×”.(1)若直线l与平面α内的无数条直线都垂直,则l⊥α. (×)(2)若直线a⊥平面α,直线b∥α,则直线a与b垂直. (√)(3)若直线a⊥α,b⊥α,则a∥b. (√)(4)若α⊥β,a⊥β,则a∥α. (×)(5)a⊥α,a⊂β⇒α⊥β. (√)2.设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β,则下列说法正确的是()A.若l⊥β,则α⊥β B.若α⊥β,则l⊥mC.若l∥β,则α∥β D.若α∥β,则l∥mA解析:因为l⊥β,l⊂α,所以α⊥β(面面垂直的判定定理).3.(多选题)如图,圆柱的轴截面是四边形ABCD,E是底面圆周上异于A,B的一点,则下列结论中正确的是()A.AE⊥CEB.BE⊥DEC.DE⊥平面CEBD.平面ADE⊥平面BCEABD解析:由AB是底面圆的直径,得∠AEB=90°,即AE⊥EB.因为圆柱的轴截面是四边形ABCD,BC⊥底面AEB,所以BC⊥AE.又EB∩BC=B,BC,BE⊂平面BCE,所以AE⊥平面BCE,所以AE⊥CE,故A正确.同理可得,BE⊥DE,故B正确.若DE⊥平面CEB,则DE⊥BC.因为BC∥AD,所以DE⊥AD.在△ADE中AD⊥AE,所以DE⊥AD不成立,所以DE⊥平面CEB不成立,故C错误.由A的证明可知AE⊥平面BCE.因为AE⊂平面ADE,所以平面BCE⊥平面ADE,故D正确.故选ABD.4.“直线a与平面α内的无数条直线都垂直”是“直线a与平面α垂直”的________条件.必要不充分解析:根据直线与平面垂直的定义知“直线a与平面α内的无数条直线都垂直”不能推出“直线a与平面α垂直”,反之则可以,所以应是必要不充分条件.5.如图,已知PA⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.4解析:因为PA⊥平面ABC,所以PA⊥AB,PA⊥AC,PA⊥BC,则△PAB,△PAC为直角三角形.由BC⊥AC,且AC∩PA=A,所以BC⊥平面PAC,从而BC⊥PC.因此△ABC,△PBC也是直角三角形.故图中共有4个直角三角形.考点1垂直关系的基本问题——基础性1.已知平面α和直线a,b,若a∥α,则“b⊥a”是“b⊥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件B解析:根据空间中直线与平面之间的位置关系,由a∥α,b⊥α,可得b⊥a.反之不成立,可能b与α相交或平行.所以“b⊥a”是“b⊥α”的必要不充分条件.2.(多选题)已知a,b表示两条不同的直线,α,β表示两个不同的平面,下列说法正确的是()A.若a⊥α,b⊥β,α∥β,则a∥bB.若a⊥α,b⊥β,a⊥b,则α⊥βC.若a⊥α,a⊥b,α∥β,则b∥βD.若α∩β=a,a∥b,则b∥α或b∥βABD解析:对于A,若a⊥α,α∥β,则a⊥β,又b⊥β,所以a∥b,故A正确;对于B,若a⊥α,a⊥b,则b⊂α或b∥α,所以存在直线m⊂α,使得m∥b,又b⊥β,所以m⊥β,所以α⊥β.故B正确;对于C,若a⊥α,a⊥b,则b⊂α或b∥α,又α∥β,所以b⊂β或b∥β,故C错误;对于D,若α∩β=a,a∥b,则b∥α或b∥β,故D正确.3.在三棱锥S-ABC中,∠SBA=∠SCA=90°,△ABC是斜边AB=a的等腰直角三角形,则以下结论:①异面直线SB与AC所成的角为90°;②直线SB⊥平面ABC;③平面SBC⊥平面SAC;④点C到平面SAB的距离是12a其中正确的是________.(填序号)①②③④解析:由题意知AC⊥平面SBC,故AC⊥SB,故①正确;再根据SB⊥AC,SB⊥AB,可得SB⊥平面ABC,平面SBC⊥平面SAC,故②③正确;取AB的中点E,连接CE(图略),可证得CE⊥平面SAB,故CE的长度即为点C到平面SAB的距离,为12a,故④在判断垂直关系问题时,需明确各类垂直关系及其内在联系,可借助几何图形来判断,也可列举反例进行判断,同时要注意判断满足定理的条件.考点2空间角及其应用——应用性(2022·全国甲卷)在长方体ABCDA1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B所成的角均为30°,则()A.AB=2ADB.AB与平面AB1C1D所成的角为30°C.AC=CB1D.B1D与平面BB1C1C所成的角为45°D解析:如图所示,连接AB1,BD,不妨令AA1=1,在长方体ABCDA1B1C1D1中,AD⊥平面AA1B1B,BB1⊥平面ABCD,所以∠B1DB和∠DB1A分别为B1D与平面ABCD和平面AA1B1B所成的角,即∠B1DB=∠DB1A=30°,所以在Rt△BDB1中,BB1=AA1=1,BD=3,B1D=2,在Rt△ADB1中,DB1=2,AD=1,AB1=3,所以AB=2,CB1=2,AC=3,故选项A,C错误,由图易知,AB在平面AB1C1D上的射影在AB1上,所以∠B1AB为AB与平面AB1C1D所成的角,在Rt△ABB1中,sin∠B1AB=BB1AB1=13=33,故选项B错误,如图,连接B1C,则B1D在平面BB1C所以∠DB1C为B1D与平面BB1C1C所成的角,在Rt△DB1C中,B1C=2=DC,所以∠DB1C=45°,所以选项D正确.求线面角、二面角的常用方法(1)线面角的求法:找出斜线在平面上的射影,关键是作垂线、找垂足,把线面角转化到一个三角形中求解.(2)二面角的大小求法:二面角的大小用它的平面角来度量.平面角的作法常见的有定义法和垂面法.注意利用等腰三角形和等边三角形的性质.在四棱锥VABCD中,底面ABCD是边长为2的正方形,其他四个侧面都是侧棱长为5的等腰三角形,则二面角VABC的大小为________.60°解析:如图,作VO⊥平面ABCD,垂足为O,则VO⊥AB.取AB的中点H,连接VH,OH,则VH⊥AB.因为VH∩VO=V,所以AB⊥平面VHO,所以AB⊥OH,所以∠VHO为二面角VABC的平面角.易求VH2=VA2-AH2=4,所以VH=2.而OH=12BC=1,所以∠VHO=60°.故二面角VABC考点3线面、面面垂直的判定与性质——综合性考向1线面垂直的判定与性质如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=54,EF交BD于点H.将△DEF沿EF折到△D′EF的位置,OD′=10.求证:D′H⊥平面ABCD.证明:由已知得AC⊥BD,AD=CD.又由AE=CF得AEAD=CFCD,故AC∥EF,因此EF⊥HD,从而EF⊥D′由AB=5,AC=6得DO=BO=AB由EF∥AC得OHDO=AEAD=14,所以OH=1,D′H于是D′H2+OH2=32+12=10=D′O2,故D′H⊥OH.又D′H⊥EF,而OH∩EF=H,且OH,EF⊂平面ABCD,所以D′H⊥平面ABCD.证明线面垂直的4种方法(1)线面垂直的判定定理:l⊥a,l⊥b,a⊂α,b⊂α,a∩b=P⇒l⊥α.(2)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.(3)性质:①a∥b,b⊥α⇒a⊥α;②α∥β,a⊥β⇒a⊥α.(4)α⊥γ,β⊥γ,α∩β=l⇒l⊥γ.(客观题可用)考向2面面垂直的判定与性质如图,在四棱锥PABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.求证:(1)CE∥平面PAD;(2)平面EFG⊥平面EMN.证明:(1)(方法一)取PA的中点H,连接EH,DH.因为E为PB的中点,所以EH∥AB且EH=12AB又CD∥AB且CD=12AB,所以EH∥CD且EH=CD所以四边形DCEH是平行四边形,所以CE∥DH.又DH⊂平面PAD,CE⊄平面PAD,所以CE∥平面PAD.(方法二)连接CF.因为F为AB的中点,所以AF=12AB.又CD=12AB,所以AF=又AF∥CD,所以四边形AFCD为平行四边形,因此CF∥AD.又CF⊄平面PAD,AD⊂平面PAD,所以CF∥平面PAD.因为E,F分别为PB,AB的中点,所以EF∥PA.又EF⊄平面PAD,PA⊂平面PAD,所以EF∥平面PAD.因为CF∩EF=F,故平面CEF∥平面PAD.又CE⊂平面CEF,所以CE∥平面PAD.(2)因为E,F分别为PB,AB的中点,所以EF∥PA.又因为AB⊥PA,所以EF⊥AB,同理可证AB⊥FG.又因为EF∩FG=F,EF,FG⊂平面EFG,所以AB⊥平面EFG.又因为M,N分别为PD,PC的中点,所以MN∥CD,又AB∥CD,所以MN∥AB,所以MN⊥平面EFG.又因为MN⊂平面EMN,所以平面EFG⊥平面EMN.1.证明平面和平面垂直的方法:(1)面面垂直的定义.(2)面面垂直的判定定理.2.已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ABD沿对角线BD折起,记折起后点A的位置为点P,且使平面PBD⊥平面BCD.求证:(1)CD⊥平面PBD;(2)平面PBC⊥平面PCD.证明:(1)因为AD=AB,∠BAD=90°,所以∠ABD=∠ADB=45°.又因为AD∥BC,所以∠DBC=45°.又∠DCB=45°,所以∠BDC=90°,即BD⊥CD.因为平面PBD⊥平面BCD,平面PBD∩平面BCD=BD,所以CD⊥平面PBD.(2)由CD⊥平面PBD,得CD⊥BP.又BP⊥PD,PD∩CD=D,所以BP⊥平面PCD.又BP⊂平面PBC,所以平面PBC⊥平面PCD.课时质量评价(三十五)A组全考点巩固练1.已知平面α,β满足α⊥β,α∩β=l,过平面α和β外的一点P作直线m⊥l,则“m∥α”是“m⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件C解析:当m∥α时,过m作平面γ∩α=n,则m∥n,结合α⊥β,得n⊥β,从而m⊥β;当m⊥β时,在α内作直线n⊥l,结合α⊥β,得n⊥β,所以m∥n.又m⊄α,n⊂α,所以m∥α.故选C.2.如图,PA垂直于矩形ABCD所在的平面,则图中与平面PCD垂直的平面是()A.平面ABCD B.平面PBCC.平面PAD D.平面PABC解析:因为PA⊥平面ABCD,所以PA⊥CD.因为四边形ABCD为矩形,所以CD⊥AD,所以CD⊥平面PAD,所以平面PCD⊥平面PAD.3.已知AB是圆柱上底面的一条直径,C是上底面圆周上异于A,B的一点,D为下底面圆周上一点,且AD⊥圆柱的底面,则必有()A.平面ABC⊥平面BCDB.平面BCD⊥平面ACDC.平面ABD⊥平面ACDD.平面BCD⊥平面ABDB解析:因为AB是圆柱上底面的一条直径,所以AC⊥BC.又AD⊥圆柱的底面,所以AD⊥BC,因为AC∩AD=A,所以BC⊥平面ACD.又BC⊂平面BCD,所以平面BCD⊥平面ACD.4.已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P为底面A1B1C1的中心,则PA与平面ABCA.5π12 C.π4 D.B解析:如图,取正三角形ABC的中心O,连接OP,则∠PAO是PA与平面ABC所成的角.因为底面边长为3,所以AD=3×32=32,AO=2三棱柱的体积为34×(3)2AA1=9解得AA1=3,即OP=AA1=3,所以tan∠PAO=OPOA=3因为直线与平面所成角的范围是0,所以∠PAO=π35.若圆锥的侧面积是底面积的3倍,则其母线与底面夹角的余弦值为________.13解析:设圆锥的底面半径为r,母线长为l,由题意πrl=3πr2,即l=3r,设母线与底面夹角为θ,则cosθ=rl=6.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)DM⊥PC(或BM⊥PC等)解析:因为PA⊥底面ABCD,所以BD⊥PA.连接AC(图略),则BD⊥AC,且PA∩AC=A,所以BD⊥平面PAC,所以BD⊥PC.所以当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.又PC⊂平面PCD,所以平面MBD⊥平面PCD.7.如图,在棱长为2的正方体ABCDA1B1C1D1中,E为BC的中点,点P在线段D1E上.点P到直线CC1的距离的最小值为________.255解析:点P到直线CC1的距离等于点P在平面ABCD上的射影到点C的距离,设点P在平面ABCD上的射影为P′,显然点P到直线CC1的距离的最小值为P′C的长度的最小值.当P′C⊥DE时,P′C的长度最小,此时P′C=2×8.如图,三棱锥PABC中,底面ABC是边长为2的正三角形,PA⊥PC,PB=2.(1)求证:平面PAC⊥平面ABC;(2)若PA=PC,求三棱锥PABC的体积.(1)证明:如图,取AC的中点O,连接BO,PO.因为△ABC是边长为2的正三角形,所以BO⊥AC,BO=3.因为PA⊥PC,所以PO=12AC因为PB=2,所以OP2+OB2=PB2,所以PO⊥OB.因为AC∩OP=O,AC,OP⊂平面PAC,所以BO⊥平面PAC.又OB⊂平面ABC,OB⊄平面PAC,所以平面PAC⊥平面ABC.(2)解:因为PA=PC,PA⊥PC,AC=2,所以PA=PC=2.由(1)知BO⊥平面PAC,所以VPABC=VBAPC=13S△PAC·BO=13×B组新高考培优练9.(2022·全国乙卷)在正方体中ABCDA1B1C1D1中,E,F分别为AB,BC的中点,则()A.平面B1EF⊥平面BDD1B.平面B1EF⊥平面A1BDC.平面B1EF∥平面A1ACD.平面B1EF∥平面A1C1DA解析:对于A,由于E,F分别为AB,BC的中点,则EF∥AC.又AC⊥BD,AC⊥DD1,BD∩DD1=D,且BD,DD1⊂平面BDD1,所以AC⊥平面BDD1,则EF⊥平面BDD1.又EF⊂平面B1EF,所以平面B1EF⊥平面BDD1,选项A正确;对于B,由选项A可知,平面B1EF⊥平面BDD1,而平面BDD1∩平面A1BD=BD,在该正方体中,试想D1运动至A1时,平面B1EF不可能与平面A1BD垂直,选项B错误;对于C,在平面ABB1A1上,易知AA1与B1E必相交,故平面B1EF与平面A1AC不平行,选项C错误;对于D,易知平面AB1C∥平面A1C1D,而平面AB1C与平面B1EF有公共点B1,故平面B1EF与平面A1C1D不可能平行,选项D错误.10.(多选题)如图,在正方体ABCDA1B1C1D1中,则下面结论正确的是()A.BD∥平面CB1D1B.AC1⊥BDC.平面ACC1A1⊥CB1D1D.异面直线AD与CB1所成的角为60°ABC解析:对于A,因为ABCDA1B1C1D1为正方体,所以BD∥B1D1,由线面平行的判定可得BD∥平面CB1D1,故A正确;对于B,连接AC,因为ABCDA1B1C1D1为正方体,所以BD⊥AC,且CC1⊥BD,由线面垂直的判定可得BD⊥平面ACC1,所以BD⊥AC1,故B正确;对于C,由上可知BD⊥平面ACC1,又BD∥B1D1,所以B1D1⊥平面ACC1,则平面ACC1A1⊥CB1D1,故C正确;对于D,异面直线AD与CB1所成的角即为直线BC与CB1所成的角为45°,故D错误.故选ABC.11.如图,在长方形ABCD中,AB=3,BC=1,点E为线段DC上一动点,现将△ADE沿AE折起,使点D在平面ABC内的射影K在直线AE上,当点E从D运动到C,则点K所形成轨迹的长度为()A.32 B.C.π3 D.C解析:由题意,将△AED沿AE折起,使平面AED⊥平面ABC,在平面AED内过点D作DK⊥AE,K为垂足,由翻折的特征知,连接D′K,则∠D′KA=90°,故点K的轨迹是以AD′为直径的圆上一弧,根据长方形知圆半径是12,如图,当E与C重合时,AK=1×14=12,取O为AD′的中点,得到△OAK是正三角形.故∠KOA=π3,所以∠KOD′=212.如图所示,在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则点C1在平面ABC上的射影H必在()A.直线AB上 B.直线BC上C.直线AC上 D.△ABC的内部A解析:连接AC1,因为AC⊥AB,AC⊥BC1,AB∩BC1=B,所以AC⊥平面ABC1.又AC⊂平面ABC,所以平面ABC1⊥平面ABC,所以点C1在平面ABC上的射影H必在两平面的交线AB上.13.已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:________.若l⊥m,l⊥α,则m∥α(答案不唯一)解析:若l⊥α,l⊥m,则m∥α,显然①③⇒②正确;若l⊥m,m∥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机型设计课程设计
- 机器翻译技术课程设计
- 机器人机械结构课程设计
- 机器人 课程设计
- 机井井管破除施工方案
- 化工企业危险化学品存储管理制度
- 2024年净水器性能检测与优化合同
- 精神卫生机构护士考核方案
- 四川省树德中学2019-2020学年高一上学期10月阶段性检测化学试题
- 2024至2030年连接器件项目投资价值分析报告
- 高考热点作文素材:《黑神话:悟空》
- DL-T5024-2020电力工程地基处理技术规程
- 中国老年2型糖尿病防治指南(2022年版)
- 2024年天翼云运维工程师认证考试复习题库(含答案)
- (高清版)JGJ 145-2013 混凝土结构后锚固技术规程
- 学校中长期发展规划方案
- 乳糜泻:诊断与治疗指南
- GB9787-1988热轧等边角钢尺寸、外形、重量及允许偏差
- 1084515617公司实际控制人证明书
- 抗菌药常见不合理应用原因分析
- 道路运输(普货)安全生产管理制度
评论
0/150
提交评论