2024届山西省晋中学市太谷县八上数学期末预测试题含解析_第1页
2024届山西省晋中学市太谷县八上数学期末预测试题含解析_第2页
2024届山西省晋中学市太谷县八上数学期末预测试题含解析_第3页
2024届山西省晋中学市太谷县八上数学期末预测试题含解析_第4页
2024届山西省晋中学市太谷县八上数学期末预测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山西省晋中学市太谷县八上数学期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知a,b,c是△ABC的三条边,满足下列条件的△ABC中,不是直角三角形的是()A. B.∠A:∠B:∠C=3:4:5 C.∠C=∠A-∠B D.a:b:c=5:12:132.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠DAE=67.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. C.4-2 D.3-43.下列二次拫式中,最简二次根式是()A.-2 B.12 C.154.计算等于()A. B. C. D.5.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44° B.66° C.88° D.92°6.已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D的长度为()A.cm B.1cm C.2cm D.cm7.小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等其中正确的结论个数是()A.1 B.2 C.3 D.48.如图,在钝角三角形中,为钝角,以点为圆心,长为半径画弧;再以点为圆心,长为半径画弧;两弧交于点连结的延长线交于点.下列结论:垂直平分;平分;是等腰三角形;是等边三角形.其中正确的有()A.个 B.个 C.个 D.个9.如图,线段AB、CD相交于点O,AO=BO,添加下列条件,不能使的是()A.AC=BD B.∠C=∠D C.AC∥BD D.OC=OD10.一个长方形的长是2xcm,宽比长的一半少4cm,若将这个长方形的长和宽都增加3cm,则该长方形的面积增加了().A.9cm2 B.(2x2x3)cm2 C.7x3cm2 D.9x3cm2二、填空题(每小题3分,共24分)11.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“_____”.12.已知,则=__________.13.如图,正方形纸片中,,是的中点,将沿翻折至,延长交于点,则的长等于__________.14.如图,有一种动画程序,屏幕上正方形是黑色区域(含正方形边界),其中四个顶点的坐标分别为、、、,用信号枪沿直线发射信号,当信号遇到黑色区域时,区域便由黑变白,则能使黑色区域变白的b的取值范围为_________.15.在直角坐标系内,已知A,B两点的坐标分别为A(-1,1),B(2,3),若M为x轴上的一点,且MA+MB最小,则M的坐标是________.16.计算:____.17.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC的位置,点B恰好在边DE上,则∠θ=_____度.18.的立方根是___________.三、解答题(共66分)19.(10分)(1)先化简,再求值:,其中;(2)解分式方程:.20.(6分)某公司销售部有营销员15人,销售部为了制定关于某种商品的每位营销员的个人月销售定额,统计了这15人某月关于此商品的个人月销售量(单位:件)如下:个人月销售量1800510250210150120营销员人数113532(1)求这15位营销员该月关于此商品的个人月销售量的平均数,并直接写出这组数据的中位数和众数;(2)假设该销售部负责人把每位营销员关于此商品的个人月销售定额确定为320件,你认为对多数营销员是否合理?并在(1)的基础上说明理由.21.(6分)如图,在等腰中,为延长线上一点,点在上,且(1)求证:;(2)若,求的度数.22.(8分)如图,在△ABC中,AB=50cm,BC=30cm,AC=40cm.(1)求证:∠ACB=90°(2)求AB边上的高.(3)点D从点B出发在线段AB上以2cm/s的速度向终点A运动,设点D的运动时间为t(s).①BD的长用含t的代数式表示为.②当△BCD为等腰三角形时,直接写出t的值.23.(8分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.24.(8分)在中,,点在边上,且是射线上一动点(不与点重合,且),在射线上截取,连接.当点在线段上时,①若点与点重合时,请说明线段;②如图2,若点不与点重合,请说明;当点在线段的延长线上时,用等式表示线段之间的数量关系(直接写出结果,不需要证明).25.(10分)已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置,并求△ABC的面积;(2)在平面直角坐标系中画出△A′B′C′,使它与△ABC关于x轴对称,并写出△A′B′C′三顶点的坐标;(3)若M(x,y)是△ABC内部任意一点,请直接写出这点在△A′B′C′内部的对应点M′的坐标.26.(10分)(1)分解因式;(2)利用因式分解计算:.

参考答案一、选择题(每小题3分,共30分)1、B【分析】解答此题时根据直角三角形的判定方法,当一个角是直角时,或两边的平方和等于第三条边的平方,也可得出它是直角三角形,分别判定即可.【题目详解】解:A、∵b2=c2-a2,

∴c2=b2+a2,∴△ABC是直角三角形

故本选项不符合题意;B、∵∠A+∠B+∠C=180°,∠A:∠B:∠C=3:4:5,∴最大角∠C=×180°=75°,此三角形不是直角三角形,本选项符合题意;C、∵∠C=∠A-∠B,

∴∠C+∠B=∠A,

∴∠A=90°,

∴△ABC是直角三角形,

故本选项不符合题意;

D、∵a:b:c=12:13:5,

∴a2+c2=b2,

∴△ABC是直角三角形,故本选项不符合题意;故选:B.【题目点拨】本题考查了直角三角形的判定方法、勾股定理的逆定理和三角形的内角和定理,能理解勾股定理的逆定理的内容是解此题的关键.2、C【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再根据∠DAE=67.5°,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后根据勾股定理求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.【题目详解】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠DAE=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选C.【题目点拨】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.3、A【解题分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【题目详解】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:A.【题目点拨】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4、A【分析】直接利用二次根式的乘除运算法则化简求出即可.【题目详解】===故选A.【题目点拨】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.5、D【分析】本题考察等腰三角形的性质,全等三角形的判定,三角形的外角定理.【题目详解】解:∵PA=PB,∴∠A=∠B,∵AM=BK,BN=AK,∴故选D.点睛:等腰三角形的两个底角相等,根据三角形全等的判定定理得出相等的角,本题的难点是外角的性质定理的利用,也是解题的关键.6、D【分析】先在直角△AOB中利用勾股定理求出AB=5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD=AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1﹣OD=1.5cm.【题目详解】∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==5cm,∵点D为AB的中点,∴OD=AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故选:D.【题目点拨】本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握“直角三角形斜边上的中线等于斜边的一半”是解题的关键.7、C【分析】根据全等三角形的判定及性质逐一判断即可.【题目详解】解:①全等三角形的形状相同、大小相等;①正确,②全等三角形的对应边相等、对应角相等;②正确,③面积相等的两个三角形不一定是全等图形,故③错误,④全等三角形的周长相等,④正确,∴①②④正确,故答案为:C.【题目点拨】全等三角形的判定及性质,理解并掌握全等三角形的判定及性质是解题的关键.8、C【分析】依据作图可得CA=CD,BA=BD,即可得到CB是AD的垂直平分线,依据线段垂直平分线的性质以及三角形内角和定理,即可得到结论.【题目详解】由作图可得,CA=CD,BA=BD,

∴CB是AD的垂直平分线,

即CE垂直平分AD,故①正确;

∴∠CAD=∠CDA,∠CEA=∠CED,

∴∠ACE=∠DCE,

即CE平分∠ACD,故②正确;

∵DB=AB,

∴△ABD是等腰三角形,故③正确;

∵AD与AC不一定相等,

∴△ACD不一定是等边三角形,故④错误;综上,①②③正确,共3个,

故选:C.【题目点拨】本题主要考查了线段垂直平分线的判定和性质以及等腰三角形的判定、等边三角形的判定,解题时注意:垂直平分线上任意一点,到线段两端点的距离相等.9、A【分析】已知AO=BO,由对顶角相等可得到∠AOC=∠BOD,当添加条件A后,不能得到△AOC≌△BOD;接下来,分析添加其余选项的条件后能否得到证明三角形全等的条件,据此解答【题目详解】解:题目隐含一个条件是∠AOC=∠BOD,已知是AO=BOA.加AC=BD,根据SSA判定△AOC≌△BOD;B.加∠C=∠D,根据AAS判定△AOC≌△BOD;C.加AC∥BD,则ASA或AAS能判定△AOC≌△BOD;D.加OC=OD,根据SAS判定△AOC≌△BOD故选A【题目点拨】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10、D【分析】根据题意列出算式,然后利用整式混合运算的法则进行化简即可.【题目详解】解:长方形的长是2xcm,则宽为(x-4)cm,由题意得:,∴该长方形的面积增加了cm2,故选:D.【题目点拨】本题考查了整式混合运算的实际应用,解题关键是能够根据题意列出代数式.二、填空题(每小题3分,共24分)11、HL【解题分析】分析:需证△BCD和△CBE是直角三角形,可证△BCD≌△CBE的依据是HL.详解:∵BE、CD是△ABC的高,∴∠CDB=∠BEC=90°,在Rt△BCD和Rt△CBE中,BD=EC,BC=CB,∴Rt△BCD≌Rt△CBE(HL),故答案为HL.点睛:本题考查全等三角形判定定理中的判定直角三角形全等的HL定理.12、1【分析】逆用同底数幂的乘法法则,即am+n=am·an解答即可.【题目详解】解:∵2m=5,2n=3,

∴2m+n=2m•2n=5×3=1.

故答案为:1.【题目点拨】本题考查了同底数幂的乘法法则的逆运用,灵活运用公式是解题的关键.13、1【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【题目详解】如图,连接AE,∵AB=AD=AF,∠D=∠AFE=90°,在Rt△AFE和Rt△ADE中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6-x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6-x)1+9=(x+3)1,解得x=1.则DE=1.故答案为:1.【题目点拨】本题考查了翻折变换,解题的关键是掌握翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理.14、-3≤b≤1【分析】求出直线y=2x+b分别经过B,D点时,b的值,即可求出所求的范围.【题目详解】由题意可知当直线y=2x+b经过B(2,1)时b的值最小,即2×2+b=1,b=-3;当直线y=2x+b过C(1,2)时,b最大即2=2×1+b,b=1,∴能够使黑色区域变白的b的取值范围为-3≤b≤1.【题目点拨】根据所给一次函数的图像的特点,找到边界点即为解此类题的常用方法.15、(,0)【分析】取点A关于x轴的对称点A′(-1,-1),连接A′B,已知两点坐标,可用待定系数法求出直线A′B的解析式,从而确定出占M的坐标.【题目详解】解:取点A关于x轴的对称点A′(-1,-1),连接A′B,与x轴交点即为MA+MB最小时点M的位置,

∵A′(-1,-1),B(2,3),

设直线A'B的解析式为y=kx+b,则有:,解得:,∴直线A′B的解析式为:,当y=0时,x=,即M(,0).故答案为:(,0).【题目点拨】利用轴对称找线段和的最小值,如果所求的点在x轴上,就取x轴的对称点,如果所求的点在y轴上,就取y轴的对称点,求直线解析式,确定直线与坐标轴的交点,即为所求.16、【分析】根据多项式乘以多项式的计算法则计算即可得到答案.【题目详解】,故答案为:.【题目点拨】此题考查整式乘法:多项式乘以多项式,用第一个多项式的每一项分别乘以另一个多项式的每一项,并把结果相加,正确掌握多项式乘以多项式的计算法则是解题的关键.17、1.【解题分析】根据三角形内角和定理求出∠ABC,根据旋转变换的性质得到∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,计算即可.【题目详解】解:∵∠ACB=90°,∠A=25°,∴∠ABC=65°,由旋转的性质可知,∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,∴∠ECB=1°,∴∠θ=1°,故答案为1.【题目点拨】本题考查的是旋转变换的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角、旋转前、后的图形全等是解题的关键.18、1【分析】的值为8,根据立方根的定义即可求解.【题目详解】解:,8的立方根是1,故答案为:1.【题目点拨】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.三、解答题(共66分)19、(1),;(2)【分析】(1)先进行化简,然后将a的值代入求解;(2)根据分式方程的解法求解.【题目详解】(1)原式=====当时,原式=(2)原方程可化为:方程两边乘得:检验:当时,所以原方程的解是【题目点拨】本题考查了分式的化简求值、解分式方程等运算,掌握运算法则是解答本题的关键.20、(1)平均数320,中位数210,众数210;(2)不合理,理由见解析.【分析】(1)根据平均数的定义以及计算公式、中位数的定义、众数的定义求解即可.(2)根据平均数、中位数、众数的定义进行分析即可.【题目详解】(1)平均数是:(1800+510+25×3+210×5+150×3+120×2)=320(件),表中的数据是按从大到小的顺序排列的,处于中间位置的是210,因而中位数是210(件),210出现了5次最多,所以众数是210;(2)不合理.因为15人中有13人的销售额不到320件,320件虽是所给一组数据的平均数,它却不能很好地反映销售人员的一般水平.销售额定为210件合适些,因为210件既是中位数,又是众数,是大部分人能达到的定额.【题目点拨】本题考查了数据统计的问题,掌握平均数的定义以及计算公式、中位数的定义、众数的定义是解题的关键.21、(1)见解析;(2)30°【分析】(1)根据在△ABC中,AB=CB,∠ABC=90°,且AE=CF,根据HL可得到Rt△ABE和Rt△CBF全等;

(2)根据Rt△ABE≌Rt△CBF,可得出∠EAB=∠BCF,再根据∠BCA=∠BAC=45°,∠ACF=60°,可以得到∠CAE的度数.【题目详解】(1)证明:∵∠ABC=90°,

∴∠ABE=∠CBF=90°,

在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL);(2)解:∵AB=CB,∠ABC=90°,∠ACF=60°,∠ACF=∠BCF+∠BCA,

∴∠BCA=∠BAC=45°,

∴∠BCF=15°,

∵Rt△ABE≌Rt△CBF,

∴∠EAB=∠BCF=15°,

∴∠CAE=∠BAC-∠EAB=45°-15°=30°.【题目点拨】本题考查全等三角形的判定与性质、等腰三角形的性质以及三角形内角和定理,掌握基本性质是解题的关键.22、(1)见解析;(2)AB边上的高为1cm;(3)①2t;②当t=15s或18s或s时,△BCD为等腰三角形.【分析】(1)运用勾股定理的逆定理即可证得∠ACB=90°;(2)运用等面积法列式求解即可;(3)①由路程=速度x时间,可得BD=2t;②分三种情况进行求解,即可完成解答.【题目详解】证明:(1)∵BC2+AC2=900+1600=2500cm2,AB2=2500cm2,∴BC2+AC2=AB2,∴∠ACB=90°,∴△ABC是直角三角形;(2)设AB边上的高为hcm,由题意得S△ABC=,解得h=1.∴AB边上的高为1cm;(3)①∵点D从点B出发在线段AB上以2cm/s的速度向终点A运动,∴BD=2t;故答案为:2t;②如图1,若BC=BD=30cm,则t==15s,如图2,若CD=BC,过点C作CE⊥AB,由(2)可知:CE=1cm,∴=18cm,∵CD=BC,且CE⊥BA,∴DE=BE=18cm,∴BD=36cm,∴t==18s,若CD=DB,如图2,∵CD2=CE2+DE2,∴CD2=(CD﹣18)2+576,∴CD=25,∴t=s,综上所述:当t=15s或18s或s时,△BCD为等腰三角形.【题目点拨】本题考查了等腰三角形的性质、勾股定理、勾股定理的逆定理、等面积法等知识,利用分类讨论思想解决问题是解答本题的关键.23、见解析【分析】连接AC.首先根据勾股定理求得AC的长,再根据勾股定理的逆定理求得∠D=90°,进而求出∠A+∠C=180°【题目详解】证明:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理,得AC2=202+152=625又CD=7,AD=24,∴CD2+AD2=625,∴AC2=CD2+AD2∴∠D=90°,∴∠A+∠C=360°−180°=180°【题目点拨】本题考查了勾股定理的逆定理、勾股定理、多边形内角与外角,借助辅助线方法是解决本题的关键24、(1)①证明见解析;②证明见解析;(2)BF=AE-CD【分析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论