版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽六安市叶集区平岗中学八年级数学第一学期期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如果关于的分式方程有解,则的值为()A. B.C.且 D.且2.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A. B. C. D.3.某种细胞的直径是0.00000095米,将0.00000095用科学计数法表示为()A. B. C. D.4.纳米是长度单位,纳米技术已广泛应用于各个领域,已知1纳米=0.000000001米,某原子的直径大约是2纳米,用科学记数法表示该原子的直径约为()A.0.2×10-9米 B.2×105.比较,3,的大小,正确的是()A. B.C. D.6.如果在y轴上,那么点P的坐标是A. B. C. D.7.下列四个图形中,是轴对称图形的有()A.4个 B.3个 C.2个 D.1个8.如图,在中,边的垂直平分线交于点,交于点,若,,那么的周长是()A. B. C. D.无法确定9.如图,等边的边长为,是边上的中线,是上的动点,是边上一点,若,则的最小值为()A. B. C. D.10.关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.5二、填空题(每小题3分,共24分)11.分解因式:x2-9=_▲.12.一个正数的平方根分别是和,则__.13.有一个长方体,长为4cm,宽2cm,高2cm,试求蚂蚁从A点到G的最短路程________14.如图,在四边形中,,,,,且,则四边形的面积是______.15.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为_______元/千克.16.若函数y=(m﹣1)x|m|是正比例函数,则该函数的图象经过第_____________象限.17.如图,在长方形ABCD中,AB=2,BC=4,点P在AD上,若△PBC为直角三角形,则CP的长为_____.18.已知点A(−2,0),点P是直线y=34x上的一个动点,当以A,O,P为顶点的三角形面积是3时,点P三、解答题(共66分)19.(10分)为了了解居民的环保意识,社区工作人员在某小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖答卷活动(每名居民必须答卷且只答一份),并用得到的数据绘制了如图所示的条形统计图(得分为整数,满分为分,最低分为分)请根据图中信息,解答下列问题:(1)本次调查,一共抽取了多少名居民?(2)求本次调查获取的样本数据的平均数和众数;(3)社区决定对该小区名居民开展这项有奖答卷活动,得分者获一等奖,请你根据调查结果,帮社区工作人员估计需要准备多少份一等奖奖品?20.(6分)如图,,,,垂足分别为,.求证:.21.(6分)阅读材料:若,求,的值.解:∵,∴,∴,∴,,∴,.根据你的观察,探究下面的问题:(),则__________,__________.()已知,求的值.()已知的三边长、、都是正整数,且满足,求的周长.22.(8分)(1)式子++的值能否为0?为什么?(2)式子++的值能否为0?为什么?23.(8分)两位同学将一个二次三项式分解因式,一位同学因看错了一次项的系数而分解成,另一位同学因看错了常数而分解成.(1)求原多项式;(2)将原多项式进行分解因式.24.(8分)小明随机抽取了某校八年级部分学生,针对他们晚上在家学习时间的情况进行调查,并将调查结果绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)本次抽取的八年级学生晚上学习时间的众数是小时,中位数是小时;(3)若该校共有600名八年级学生,则晚上学习时间超过1.5小时的约有多少名学生?25.(10分)如图,在中,,点是边上一点,垂直平分,交于点,交于点,连结,求证:.26.(10分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值.
参考答案一、选择题(每小题3分,共30分)1、D【分析】先去分母,然后讨论无解情况,求出即可.【题目详解】去分母得:,则,当x=2时,为增根方程无解,则,则且,故选D.【题目点拨】本题是对分式方程的考查,熟练掌握分式方程知识的考查是解决本题的关键.2、A【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得答案.【题目详解】∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=kx+k的图象经过一、二、三象限;故答案为:A.【题目点拨】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.3、A【分析】科学记数法的表示形式为:(其中1≤∣a∣﹤10,n为整数),当原数的绝对值小于1时,n为负数,且绝对值为原数左起第一个不为零的数字前零的个数,再确定a值即可.【题目详解】0.00000095=,故选:A.【题目点拨】本题考查科学记数法表示较小的数,熟练掌握科学记数法的表示形式,会确定a值和n值是解答的关键.4、C【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】解:2纳米=2×0.000000001米=0.000000002米=2×10-9米,故本题答案为:C.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、C【分析】分别计算出,3,的平方,即可比较大小.【题目详解】解:,32=9,,∵7<8<9,∴,故选:C.【题目点拨】本题考查了实数大小比较,解决本题的关键是先算出3个数的平方,再比较大小.6、B【分析】根据点在y轴上,可知P的横坐标为1,即可得m的值,再确定点P的坐标即可.【题目详解】解:∵在y轴上,∴解得,∴点P的坐标是(1,-2).故选B.【题目点拨】解决本题的关键是记住y轴上点的特点:横坐标为1.7、B【分析】根据轴对称图形的定义依次进行判断即可.【题目详解】把某个图形沿某条直线折叠,如果图形的两部分能完全重合,那么这个是轴对称图形,因此第1,2,3是轴对称图形,第4不是轴对称图形.【题目点拨】本题考查轴对称图形,掌握轴对称图形的定义为解题关键.8、C【分析】根据中垂线可得出AN=CN,即可将BC转换成AN+BN.【题目详解】∵MN是AC的垂直平分线,∴AN=CN,∵AB=3,BC=13,∴△ABN的周长=AB+AN+BN=AB+AN+BN=AB+BC=3+13=1.故选C.【题目点拨】本题考查线段中垂线的计算,关键在于利用中垂线的性质转换线段的长度.9、B【分析】连接,与交于点,就是的最小值,根据等边三角形的性质求解即可.【题目详解】解:连接,与交于点,是边上的中线,,是的垂直平分线,、关于对称,就是的最小值,等边的边长为,∴,,,,,是的垂直平分线,∵是等边三角形,易得,,的最小值为,故选:B.【题目点拨】本题考查等边三角形的性质、轴对称-路径最短等内容,明确当B,M,E三点共线时最短是解题的关键.10、A【解题分析】解:去分母得:3x﹣2=2x+2+m①.由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程①得:﹣1=﹣2+2+m,解得:m=﹣1.故选A.二、填空题(每小题3分,共24分)11、(x+3)(x-3)【题目详解】x2-9=(x+3)(x-3),故答案为(x+3)(x-3).12、1.【分析】根据正数的两个平方根互为相反数可得关于x的方程,解方程即可得.【题目详解】根据题意可得:x+1+x﹣5=0,解得:x=1,故答案为1.【题目点拨】本题主要考查了平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.13、【分析】两点之间线段最短,把A,G放到同一个平面内,从A到G可以有3条路可以到达,求出3种情况比较,选择最短的.【题目详解】解:第一种情况:第二种情况:第三种情况:综上,最小值为【题目点拨】如此类求蚂蚁从一个点到另一个点的最短距离的数学问题,往往都需要比较三种路径的长短,选出最优的.14、1【分析】连接BD,如图,在△ABD中,根据勾股定理可得BD的长,然后根据勾股定理的逆定理可判断△BDC是直角三角形,然后根据S四边形=计算即可.【题目详解】解:连接BD,如图,在△ABD中,∵,,,∴,∵,∴∠BDC=90°,∴S四边形=.故答案为:1.【题目点拨】本题考查了勾股定理及其逆定理以及三角形的面积等知识,属于基本题型,熟练掌握勾股定理及其逆定理是解答的关键.15、1.【题目详解】解:设售价至少应定为x元/千克,依题可得方程x(1-5%)×80≥760,解得x≥1故答案为1.【题目点拨】本题考查一元一次不等式的应用.16、二、四【解题分析】试题分析:形如y=kx(k是常数,k≠0)的函数叫做正比例函数;正比例函数y=kx(k是常数,k≠0),当k>0时,直线y=kx依次经过第三、一象限,从左向右上升,y随x的增大而增大;当k<0时,直线y=kx依次经过第二、四象限,从左向右下降,y随x的增大而减小.根据正比例函数定义可得:|m|=1,且m﹣1≠0,计算出m的值,然后可得解析式,再根据正比例函数的性质可得答案.由题意得:|m|=1,且m﹣1≠0,解得:m=﹣1,函数解析式为y=﹣2x,∵k=﹣2<0,∴该函数的图象经过第二、四象限考点:正比例函数的定义和性质17、1或1或1【分析】分情况讨论:①当∠PBC=90°时,P与A重合,由勾股定理得CP=;②当∠BPC=90°时,由勾股定理得11+AP1+11+(4﹣AP)1=16,求出AP=1,DP=1,由勾股定理得出CP=;③当∠BCP=90°时,P与D重合,CP=CD=1.【题目详解】解:∵四边形ABCD是矩形,∴AB=CD=1,AD=BC=4,∠A=∠ABC=∠BCD=∠D=90°,分情况讨论:①当∠PBC=90°时,P与A重合,由勾股定理得:CP=;②当∠BPC=90°时,由勾股定理得:BP1=AB1+AP1=11+AP1,CP1=CD1+DP1=11+(4﹣AP)1,BC1=BP1+CP1=41,∴11+AP1+11+(4﹣AP)1=16,解得:AP=1,∴DP=1,∴CP=;③当∠BCP=90°时,P与D重合,CP=CD=1;综上所述,若△PBC为直角三角形,则CP的长为或或1;故答案为:1或1或1.【题目点拨】本题考查了矩形的性质、勾股定理、解一元二次方程以及分类讨论等知识;熟练掌握勾股定理和分类讨论是解题的关键.18、(4,3)或(-4,-3)【解题分析】依据点P是直线y=34x上的一个动点,可设P(x,34x),再根据以A,O,P为顶点的三角形面积是3,即可得到x的值,进而得出点【题目详解】∵点P是直线y=34x上的一个动点,
∴可设P(x,34x),
∵以A,O,P为顶点的三角形面积是3,
∴12×AO×|34x|=3,
即12×2×|34x|=3,
解得x=±4,
∴P(4,3)或(-4,-3),
故答案是:(4,【题目点拨】考查了一次函数图象上点的坐标特征,解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b.三、解答题(共66分)19、(1)50;(2)8.26分,8分;(3)100【分析】(1)根据总数=个体数量之和计算即可;(2)根据样本的平均数和众数的定义计算即可;(3)利用样本估计总体的思想解决问题即可;【题目详解】(1)(名),答:本次调查一共抽取了名居民;(2)平均数(分);众数:从统计图可以看出,得分的人最多,故众数为(分);(3)(份),答:估计大约需要准备份一等奖奖品.【题目点拨】本题考查了条形统计图综合运用,平均数与众数等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.注意:条形统计图能清楚地表示出每个项目的数据.20、详见解析【分析】根据等腰三角形性质得,根据垂直定义得,证△BEM≌△CFM(AAS)可得.【题目详解】证明:∵∴∵,∴=90°在△BEM和△CFM中∴△BEM≌△CFM(AAS)∴【题目点拨】考核知识点:全等三角形的判定和性质.寻找条件,证三角形全等是关键.21、(1)a=-3,b=1;(2)16(3)9【题目详解】()∵,∴,∴,∵,,∴,,,;()∵,∴,∴,∵,,∴,,,,∴,∴;()∵,∴,∴,∵,,∴,,,,∵,∴,∵,∴,∵、、为正整数,∴,∴周长=.22、(1)不能为1,理由见解析;(2)不能为1,理由见解析【分析】(1)将原式通分,相加,根据原式的分母不为1,可得x≠1,y≠1,z≠1,从而分子也不为1,则原式的值不能为1;(2)将原式通分,相加,根据原式的分母不为1,可得y﹣z≠1,x﹣y≠1,z﹣x≠1,从而分子也不为1,则原式的值不能为1.【题目详解】解:(1),,,,,式子的值不能为1;(2),,,,,式子的值不能为1.【题目点拨】本题考查了分式的加减及偶次方的非负性,掌握通分的方法,并明确偶次方的非负性,是解题的关键.23、(1)3x1+11x+11;(1)3(x+1)1【分析】(1)利用多项式乘法计算出3(x-1)(x-4),3(x-1)(x+6),进而可得原多项式为3x1+11x+11;(1)提公因式3,再利用完全平方公式进行二次分解即可.【题目详解】解:(1)∵3(x-1)(x-4)
=3(x1-5x+4)=3x1-15x+11,
3(x-1)(x+6)
=3(x1+4x-11)=3x1+11x-36,
∴原多项式为3x1+11x+11;(1)3x1+11x+11=3(x1+4x+4)
=3(x+1)1.
故因式分解为:3(x+1)1.【题目点拨】此题主要考查了因式分解和多项式乘以多项式,关键是掌握计算法则,正确确定原多项式.24、(1)补全条形统计图和扇形统计图见解析;(2)2,2;(3)晚上学习时间超过1.5小时的约有450名学生.【分析】(1)先由1小时的人数及其所占百分比求得总人数,总人数乘以2.5小时对应百分比求得其人数,用2小时人数除以总人数可得其百分比;
(2)根据人数、中位数的定义求解可得;
(3)总人数乘以样
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年吉林电子信息职业技术学院高职单招数学历年(2016-2024)频考点试题含答案解析
- 教辅材料征订使用和管理测试题
- 2025至2031年中国榨菜丝行业投资前景及策略咨询研究报告
- 深度学习在数据分析中的应用-第5篇-深度研究
- 深度学习与权限分析-深度研究
- 无线通信功率放大器设计-深度研究
- Swift语言适配技巧-深度研究
- 2025年度餐饮服务业员工劳动权益合同范本
- 二零二五年度互联网平台知识产权侵权纠纷处理合同标准
- 二零二五年度创新型电子商务平台用户注册使用合同
- 2021上海春考作文题解析及范文(怎样做与成为什么样人)
- 体育馆改造装修工程施工组织设计
- 137案例黑色三分钟生死一瞬间事故案例文字版
- 【魔镜洞察】2024药食同源保健品滋补品行业分析报告
- 钢结构工程施工(第五版) 课件 2项目四 高强度螺栓
- 大学生就业指导(高等院校学生学习就业指导课程)全套教学课件
- 《实验诊断学》课件
- 小学网管的工作总结
- 诊所校验现场审核表
- 派出所上户口委托书
- 医院6s管理成果汇报护理课件
评论
0/150
提交评论