2024届江西省上饶广丰区六校联考八上数学期末达标检测试题含解析_第1页
2024届江西省上饶广丰区六校联考八上数学期末达标检测试题含解析_第2页
2024届江西省上饶广丰区六校联考八上数学期末达标检测试题含解析_第3页
2024届江西省上饶广丰区六校联考八上数学期末达标检测试题含解析_第4页
2024届江西省上饶广丰区六校联考八上数学期末达标检测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江西省上饶广丰区六校联考八上数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,若BD=6,则CD的长为()A.2 B.4 C.6 D.32.如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A.11 B.12 C.13 D.143.如图,△ABC的角平分线BO、CO相交于点O,∠A=120°,则∠BOC=()A.150° B.140° C.130° D.120°4.若,则点(x,y)在第()象限.A.四 B.三 C.二 D.一5.下面的图形中,是轴对称图形的是()A. B. C. D.6.下列各式能用平方差公式计算的是()A. B.C. D.7.如图,中,,,,动点从点出发沿射线以2的速度运动,设运动时间为,当为等腰三角形时,的值为()A.或 B.或12或4 C.或或12 D.或12或48.下列选项中的整数,与最接近的是()A.2 B.3 C.4 D.59.如图,已知,点、、……在射线上,点、、…在射线上;、、……均为等边三角形,若,则的边长为.A.4028 B.4030 C. D.10.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为千米/时,则可列方程()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,在长方形ABCD中,AB=2,BC=4,点P在AD上,若△PBC为直角三角形,则CP的长为_____.12.已知直线y=kx+b与x轴正半轴相交于点A(m+4,0),与y轴正半轴相交于点B(0,m),点C在第四象限,△ABC是以AB为斜边的等腰直角三角形,则点C的坐标是______.13.如图是一副三角尺拼成图案,则∠AEB=_____度.

14.已知点与点关于直线对称,那么等于______.15.如果是一个完全平方式,那么k的值是__________.16.如图所示,在Rt△ABC中,∠C=90°,∠A=15°,将△ABC翻折,是顶点A与顶点B重合,折痕为MH,已知AH=2,则BC等于_____.17.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,点点F作DE∥BC,交AB于点D,交AC于点E。若BD=3,DE=5,则线段EC的长为______.18.为了探索代数式的最小值,小明运用了“数形结合”的思想:如图所示,在平面直角坐标系中,取点,点,设点.那么,.借助上述信息,可求出最小值为__________.三、解答题(共66分)19.(10分)(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.20.(6分)如图,直线EF与x轴、y轴分别相交于点E、F,点E的坐标为(-8,0),点F的坐标为(0,6),点A的坐标为(-6,0),点P(x,y)是直线EF上的一个动点,且P点在第二象限内;(1)求直线EF的解析式;(2)在点P的运动过程中,写出△OPA的面积S与x的函数表达式,并写出自变量x的取值范围;(3)探究,当点P运动到什么位置(求P的坐标)时,△OPA的面积是?21.(6分)某商场销售两种品牌的足球,购买2个品牌和3个品牌的足球共需280元;购买3个品牌和1个品牌的足球共需210元.(1)求这两种品牌足球的单价;(2)开学前,该商场对这两种足球开展了促销活动,具体办法如下:品牌足球按原价的九折销售,品牌足球10个以上超出部分按原价的七折销售.设购买个品牌的足球需要元,购买个品牌的足球需要元,分别求出,关于的函数关系式.(3)某校准备集体购买同一品牌的足球,若购买足球的数量为15个,购买哪种品牌的足球更合算?请说明理由.22.(8分)我国边防局接到情报,近海处有一可疑船只正向公海方向行驶,边防部迅速派出快艇追赶(如图1).图2中分别表示两船相对于海岸的距离(海里)与追赶时间(分)之间的关系.根据图象问答问题:(1)①直线与直线中表示到海岸的距离与追赶时间之间的关系;②与比较速度快;③如果一直追下去,那么________(填“能”或“不能")追上;④可疑船只速度是海里/分,快艇的速度是海里/分;(2)与对应的两个一次函数表达式与中的实际意义各是什么?并直接写出两个具体表达式.(3)分钟内能否追上?为什么?(4)当逃离海岸海里的公海时,将无法对其进行检查,照此速度,能否在逃入公海前将其拦截?为什么?23.(8分)如图,在中,,为上一点,,于点,于点,相交于点.(1)求证:;(2)若,求的长.24.(8分)如图是某机器中的根空心钢立柱,高为h米,外半径为R米,内半径为r米,每立方米钢的重量为7.8吨,求:m根这样的空心钢立柱的总质量.25.(10分)如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE于F,连接DE,AE=5,BE=4,则DF=_____.26.(10分)计算:(1);(2).

参考答案一、选择题(每小题3分,共30分)1、D【分析】由作图过程可得DN是AB的垂直平分线,AD=BD=6,再根据直角三角形10度角所对直角边等于斜边一半即可求解.【题目详解】由作图过程可知:DN是AB的垂直平分线,∴AD=BD=6∵∠B=10°∴∠DAB=10°∴∠C=90°,∴∠CAB=60°∴∠CAD=10°∴CD=AD=1.故选:D.【题目点拨】本题考查了作图-基本作图、线段垂直平分线的性质、含10度角的直角三角形,解决本题的关键是掌握线段垂直平分线的性质.2、B【分析】设这个多边形的边数为n,根据多边形的内角和公式和多边形的外角和都等于360°,列出方程即可求出结论.【题目详解】解:设这个多边形的边数为n由题意可得180(n-2)=360×5解得:n=12故选B.【题目点拨】此题考查的是根据多边形的内角和和外角和的关系,求边数,掌握多边形的内角和公式和多边形的外角和都等于360°是解决此题的关键.3、A【题目详解】解:∵∠BAC=120°,∴∠ABC+∠ACB=60°,∵点O是∠ABC与∠ACB的角平分线的交点,∴∠OBC+∠OCB=30°,∴∠BOC=150°.故选A.4、D【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出点所在的象限.【题目详解】解:∵,∴,

解得:,

则点(1,1)在第一象限,

故选:D.【题目点拨】本题考查解二元一次方程组,以及非负数的性质,点的坐标,熟练掌握方程组的解法是解题的关键.5、C【分析】沿着一条直线对折,两边能够完全重合的图形就是轴对称图形,根据定义判断即可.【题目详解】A选项图形不是轴对称图形,不符合题意;B选项图形不是轴对称图形,不符合题意;C选项图形是轴对称图形,符合题意;D选项图形不是轴对称图形,不符合题意;故选C.【题目点拨】本题考查轴对称图形的判断,熟记轴对称图形的定义是解题的关键.6、C【分析】根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,对各选项分析判断后利用排除法求解.【题目详解】A.相同字母的系数不同,不能用平方差公式计算;B.含y的项系数符号相反,但绝对值不同,不能用平方差公式计算;C.含y的项符号相同,含x的项符号相反,能用平方差公式计算;D.含x、y的项符号都相反,不能用平方差公式计算.故选:C.【题目点拨】本题考查了平方差公式,注意两个二项式中有一项完全相同,另一项互为相反数,并且相同的项和互为相反数的项必须同时具有,熟记公式结构是解答本题的关键.7、C【分析】根据勾股定理求出BC,当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.【题目详解】因为中,,,,所以(cm)①当AB=BP时,t=(s);②当AB=AP时,因为AC⊥BC,所以BP=2BC=24cm,所以t=(s);③当BP=AP时,AP=BP=2tcm,CP=(12-2t)cm,AC=5cm,在Rt△ACP中,AP2=AC2+CP2,所以(2t)2=52+(12-2t)2,解得:t=综_上所述:当△ABP为等腰三角形时,或或12故选:C【题目点拨】考核知识点:等腰三角形,勾股定理.根据题画出图形,再利用勾股定理解决问题是关键.8、C【分析】根据,及3.52即可解答.【题目详解】解:∵9<13<16,∴,∵,∴,则最接近的是4,故选:C.【题目点拨】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.9、C【分析】根据等腰三角形的性质,等边三角形的性质以及三角形外角的性质得出A1B1=1A2B2=2,A3B3=4,A4B4=8……,可得AnBn=2n-1,即可求出的边长为..【题目详解】解:如图,∵是等边三角形,

∴∠B1A1O=60°,

∵∠MON=30°,

∴∠OB1A1=60°−30°=30°,

∴OA1=B1A1∵,

∴OA1=A1B1=1同理可得,A2B2=2,A3B3=4,A4B4=8,……

∴AnBn=2n-1,∴当n=2015时,A2015B2015=22014,故选C.【题目点拨】本题考查的是等边三角形的性质以及等腰三角形的性质,根据已知得出规律是解题关键.10、A【解题分析】设江水的流速为x千米/时,.故选A.点睛:点睛:本题主要考查分式方程的实际问题的应用,解题的关键是读懂题目的意思,根据题目给出的条件,设出未知数,分别找出顺水和溺水对应的时间,找出合适的等量关系,列出方程即可.二、填空题(每小题3分,共24分)11、1或1或1【分析】分情况讨论:①当∠PBC=90°时,P与A重合,由勾股定理得CP=;②当∠BPC=90°时,由勾股定理得11+AP1+11+(4﹣AP)1=16,求出AP=1,DP=1,由勾股定理得出CP=;③当∠BCP=90°时,P与D重合,CP=CD=1.【题目详解】解:∵四边形ABCD是矩形,∴AB=CD=1,AD=BC=4,∠A=∠ABC=∠BCD=∠D=90°,分情况讨论:①当∠PBC=90°时,P与A重合,由勾股定理得:CP=;②当∠BPC=90°时,由勾股定理得:BP1=AB1+AP1=11+AP1,CP1=CD1+DP1=11+(4﹣AP)1,BC1=BP1+CP1=41,∴11+AP1+11+(4﹣AP)1=16,解得:AP=1,∴DP=1,∴CP=;③当∠BCP=90°时,P与D重合,CP=CD=1;综上所述,若△PBC为直角三角形,则CP的长为或或1;故答案为:1或1或1.【题目点拨】本题考查了矩形的性质、勾股定理、解一元二次方程以及分类讨论等知识;熟练掌握勾股定理和分类讨论是解题的关键.12、(2,-2)【分析】根据等腰直角三角形的性质构造全等三角形,证明全等三角形后,根据全等的性质可得对应线段等,即可得到等量,列出方程求解即可得到结论;【题目详解】解:如图,过C作CF⊥x轴,CE⊥y轴,垂足分别为E、F,则四边形OECF为矩形,∠BEC=∠CFA=90°,由题意可知,∠BCA=90°,BC=AC,∵四边形OECF为矩形,∴∠ECF=90°,∴∠1+∠3=90°,又∵∠2+∠3=90°,∴∠1=∠2,在△BEC和△AFC中,∴△BEC≌△AFC∴CE=CF,AF=BE,设C点坐标为(a,b),则AF=m+4-a,BE=m-b∴解得,∴点C(2,-2)故答案为:(2,-2)【题目点拨】本题考查一次函数与坐标轴交点、等腰直角三角形性质、三角形全等性质和判定、两点间距离等知识点,画出图形,构造全等图形是解题的关键.13、75º【分析】根据三角板的特殊角和三角形的内角和是180度求解即可.

【题目详解】由图知,∠A=60°,∠ABE=∠ABC-∠DBC=90°-45°=45°,∴∠AEB=180°-(∠A+∠ABE)=180°-(60°+45°)=75°.故答案为:7514、1【分析】轴对称图形的性质是对称轴垂直平分对应点的连线,且在坐标系内关于x对称,则y相等,所以,.【题目详解】点与点关于直线对称∴,解得,∴故答案为1.【题目点拨】本题考察了坐标和轴对称变换,轴对称图形的性质是对称轴垂直平分对应点的连线,此类题是轴对称相关考点中重要的题型之一,掌握对轴对称图形的性质是解决本题的关键.15、±4.【分析】这里首末两项是x和2的平方,那么中间项为加上或减去x和2的乘积的2倍也就是kx,由此对应求得k的数值即可.【题目详解】∵是一个多项式的完全平方,∴kx=±2×2⋅x,∴k=±4.故答案为:±4.【题目点拨】此题考查完全平方式,解题关键在于掌握计算公式.16、1.【分析】根据折叠的性质得到HB=HA,根据三角形的外角的性质得到∠CHB=30°,根据直角三角形的性质计算即可.【题目详解】由折叠的性质可知,HB=HA=2,∴∠HAB=∠HBA=15°,∴∠CHB=30°,∵∠C=90°,∴BC=BH=1,故答案为:1.【题目点拨】本题考查的是翻转变换的性质,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.17、1【分析】根据△ABC中,∠ABC和∠ACB的平分线相交于点F.求证∠DBF=∠FBC,∠ECF=∠BCF,再利用两直线平行内错角相等,求证出∠DFB=∠DBF,∠CFE=∠BCF,即BD=DF,FE=CE,然后利用等量代换即可求出线段CE的长.【题目详解】∵∠ABC和∠ACB的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF∥BC,交AB于点D,交AC于点E.∴∠DFB=∠FBC,∠EFC=∠BCF,∴∠DFB=∠DBF,∠CFE=∠ECF,∴BD=DF=3,FE=CE,∴CE=DE−DF=5−3=1.故选:C.【题目点拨】此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题难度不大,是一道基础题.18、5【分析】要求出最小值,即求AP+PB长度的最小值;根据两点之间线段最短可知AP+PB的最小值就是线段AB的长度,求出线段AB长即可.【题目详解】连接,如图:由题意可知:点,点,点∴AP=,BP=,要求出最小值,即求长度的最小值,据两点之间线段最短可知求的最小值就是线段的长度.,点,.故答案为:.【题目点拨】本题主要考查了最短路线问题、两点间的距离公式以及勾股定理应用,利用了数形结合的思想,利用两点间的距离公式求解是解题关键.三、解答题(共66分)19、(1)证明见解析;(2)①②③;(3)∠A+∠C=180°.【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;

(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;

(3)先判断出△BDP是等边三角形,得出BD=BP,∠DBP=60°,进而判断出△ABD≌△CBP(SAS),即可得出结论.【题目详解】(1)证明:∵∠BAC=∠DAE,

∴∠BAC+∠CAD=∠DAE+∠CAD,

∴∠BAD=∠CAE,

在△ABD和△ACE中,,

∴△ABD≌△ACE;

(2)如图2,∵△ABC和△ADE是等边三角形,

∴AB=AC,AD=AE,∠BAC=∠DAE=60°,

∴∠BAD=∠CAE,

在△ABD和△ACE中,,

∴△ABD≌△ACE,

∴BD=CE,①正确,∠ADB=∠AEC,

记AD与CE的交点为G,

∵∠AGE=∠DGO,

∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,

∴∠DOE=∠DAE=60°,

∴∠BOC=60°,②正确,

在OB上取一点F,使OF=OC,

∴△OCF是等边三角形,

∴CF=OC,∠OFC=∠OCF=60°=∠ACB,

∴∠BCF=∠ACO,

∵AB=AC,

∴△BCF≌△ACO(SAS),

∴∠AOC=∠BFC=180°-∠OFC=120°,

∴∠AOE=180°-∠AOC=60°,③正确,

连接AF,要使OC=OE,则有OC=CE,

∵BD=CE,

∴CF=OF=BD,

∴OF=BF+OD,

∴BF<CF,

∴∠OBC>∠BCF,

∵∠OBC+∠BCF=∠OFC=60°,

∴∠OBC>30°,而没办法判断∠OBC大于30度,

所以,④不一定正确,

即:正确的有①②③,

故答案为①②③;

(3)如图3,

延长DC至P,使DP=DB,

∵∠BDC=60°,

∴△BDP是等边三角形,

∴BD=BP,∠DBP=60°,

∵∠BAC=60°=∠DBP,

∴∠ABD=∠CBP,

∵AB=CB,

∴△ABD≌△CBP(SAS),

∴∠BCP=∠A,

∵∠BCD+∠BCP=180°,

∴∠A+∠BCD=180°.【题目点拨】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.20、(1)y=x+1;(2)S=x+18(﹣8<x<0);(3)点P的坐标为(﹣5,)时,△OPA的面积是.【分析】(1)用待定系数法直接求出;

(2)先求出OA,表示出PD,根据三角形的面积公式,可得函数解析式;再根据P(x,y)在第二象限内的直线上,可得自变量的取值范围;

(3)利用(2)中得到的函数关系式直接代入S值,求出x即可.【题目详解】解:(1)设直线EF的解析式为y=kx+b,由题意得:解得,k=;∴直线EF的解析式为y=x+1.(2)如图,

作PD⊥x轴于点D,∵点P(x,y)是直线y=x+1上的一个动点,点A的坐标为(﹣1,0)∴OA=1,PD=x+1∴S=OA•PD=×1×(x+1)=x+18(﹣8<x<0);(3)由题意得,x+18=,解得,x=﹣5,则y=×(﹣5)+1=,∴点P的坐标为(﹣5,)时,△OPA的面积是.【题目点拨】本题是一次函数综合题,主要考查了待定系数法,三角形的面积公式,解题的关键是求出直线EF解析式.21、(1)A品牌足球的单价为50元,B品牌足球的单价为60元;(2);;(3)购买A品牌的足球更划算,理由见解析【分析】(1)设A品牌足球的单价为a元,B品牌足球的单价为b元,根据题意列方程组,解方程组即可;(2)分别根据A、B品牌的促销方式表示出购买所需费用即可,对B品牌分类讨论;(3)根据上述所求关系式,分别求出当购买足球的数量为15个时,购买两种品牌足球的价格,花费越少越划算.【题目详解】(1)设A品牌足球的单价为x元,B品牌足球的单价为y元,,解得:.答:A品牌足球的单价为50元,B品牌足球的单价为60元.(2)A品牌:;B品牌:①当0≤x≤10时,;②当x>10时,.综上所述:;.(3)购买A品牌:45×15=675(元);购买B品牌:15>10,42×15+180=810,675<810,所以购买A品牌的足球更划算.【题目点拨】本题主要考查二元一次方程组和一次函数的实际应用,正确列出二元一次方程组和一次函数是解题关键.22、(1)①;②;③能;④0.2,0.5.(2)两直线函数表达式中的表示的是两船的速度.A船:,B船:.(3)15分钟内不能追上.(4)能在逃入公海前将其拦截.【分析】(1)①根据图象的意义,是从海岸出发,表示到海岸的距离与追赶时间之间的关系;②观察两直线的斜率,B船速度更快;③B船可以追上A船;④根据图象求出两直线斜率,即为两船的速度.(2)两直线函数表达式中的表示的是两船的速度.(3)求出两直线的函数表达式,令时间,代入两表达式,若,则表示能追上,否则表示不能追上.(4)联立两函数表达式,解出B船追上A船时的时间与位置,与12海里比较,若该位置小于12海里,则表示能在逃入公海前将其拦截.【题目详解】解:(1)①直线与直线中,表示到海岸的距离与追赶时间之间的关系;②与比较,速度快;③B船速度更快,可以追上A船;④B船速度海里/分;A船速度海里/分.(2)由图象可得,将点代入,可得,解得,表示B船的速度为每分钟0.5海里,所以:.将点,代入,可得,解得,所以:,表示A船速度为每分钟0.2海里.(3)当时,,,,所以15分钟内不能追上.(4)联立两表达式,,解得,此时,所以能在逃入公海

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论