四川省广元市苍溪县2024届八上数学期末质量跟踪监视试题含解析_第1页
四川省广元市苍溪县2024届八上数学期末质量跟踪监视试题含解析_第2页
四川省广元市苍溪县2024届八上数学期末质量跟踪监视试题含解析_第3页
四川省广元市苍溪县2024届八上数学期末质量跟踪监视试题含解析_第4页
四川省广元市苍溪县2024届八上数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省广元市苍溪县2024届八上数学期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.在平面直角坐标系中,下列各点在第二象限的是()A.(3,1)B.(3,-1)C.(-3,1)D.(-3,-1)2.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.BC∥EF C.∠A=∠EDF D.AD=CF3.若m=275,n=345,则m、n的大小关系正确的是()A.m>n B.m<n C.相等 D.大小关系无法确定4.点在()A.第一象限 B.第二象限 C.第二象限 D.第四象限5.无论x取什么数,总有意义的分式是A. B. C. D.6.下列命题中,真命题是()A.对顶角不一定相等 B.等腰三角形的三个角都相等C.两直线平行,同旁内角相等 D.等腰三角形是轴对称图形7.若一个三角形的三个内角的度数之比为1:1:2,则此三角形是()A.锐角三角形 B.钝角三角形C.等边三角形 D.等腰直角三角形8.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是()A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF9.若不等式组,只有三个正整数解,则a的取值范围为()A. B. C. D.10.下列命题中的真命题是()A.锐角大于它的余角 B.锐角大于它的补角C.钝角大于它的补角 D.锐角与钝角之和等于平角11.如图所示,,点为内一点,点关于对称的对称点分别为点,连接,分别与交于点,连接,则的度数为()A. B. C. D.12.若x、y的值均扩大为原来的2倍,则下列分式的值保持不变的是A. B. C. D.二、填空题(每题4分,共24分)13.若,则的值为_____.14.如图在3×3的正方形网格中有四个格点A.B.C.D,以其中一点为原点,网格线所在直线为坐标轴建立直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是____点.15.若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x=_______________.16.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于17.如果正方形的边长为4,为边上一点,,为线段上一点,射线交正方形的一边于点,且,那么的长为__________.18.如图所示是金堂某校平面示意图的一部分,若用“”表示教学楼的位置,“”表示校门的位置,则图书馆的位置可表示为_____.三、解答题(共78分)19.(8分)如图甲,正方形和正方形共一顶点,且点在上.连接并延长交于点.(1)请猜想与的位置关系和数量关系,并说明理由;(2)若点不在上,其它条件不变,如图乙.与是否还有上述关系?试说明理由.20.(8分)已知:直线,点,分别是直线,上任意两点,在直线上取一点,使,连接,在直线上任取一点,作,交直线于点.(1)如图1,若点是线段上任意一点,交于,求证:;(2)如图2,点在线段的延长线上时,与互为补角,若,请判断线段与的数量关系,并说明理由.21.(8分)已知:如图,为线段上一点,,,.求证:.22.(10分)如图,已知,点、点在线段上,与交于点,且,.求证:.23.(10分)某学校为了了解本校1200名学生的课外阅读的情况,现从各年级随机抽取了部分学生,对他们一周的课外阅读时间进行了调整,井绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为______,图①中的值为______;(Ⅱ)求本次调查获取的样本数据的众数、中位数和平均数;(Ⅲ)根据样本数据,估计该校一周的课外阅读时间大于的学生人数.24.(10分)解不等式组:,并把此不等式组的解集在数轴上表示出来.25.(12分)如图,在中,,,点,分别在边,上,且.若.求的度数.26.已知,如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=18cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为t(s),解答下列问题:(1)t为______时,△PBQ是等边三角形?(2)P,Q在运动过程中,△PBQ的形状不断发生变化,当t为何值时,△PBQ是直角三角形?说明理由.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】由第二象限中坐标特点为,横坐标为负,纵坐标为正,由此即可判断.【题目详解】A.(3,1)位于第一象限;B.(3,-1)位于第四象限;C.(-3,1)位于第二象限;D.(-3,-1)位于第三象限;故选C.【题目点拨】此题主要考察直角坐标系的各象限坐标特点.2、D【分析】根据“SSS”可添加AD=CF使△ABC≌△DEF.【题目详解】解:A、添加∠BCA=∠F是SSA,不能证明全等,故A选项错误;B、添加.BC∥EF得到的就是A选项中的∠BCA=∠F,故B选项错误;C、添加∠A=∠EDF是SSA,不能证明全等,故C选项错误;D、添加AD=CF可得到AD+DC=CF+DC,即AC=DF,结合题目条件可通过SSS得到△ABC≌△DEF,故D选项正确;故选D.【题目点拨】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边3、A【分析】根据幂的乘方法则,将每一个数化为指数相同的数,再比较底数.【题目详解】解:∵m=275=(25)15=3215,n=345=(33)15=2715,

∴275>345,即m>n.

故选:A.【题目点拨】本题考查幂的乘方,积的乘方运算法则.理清指数的变化是解题的关键.4、A【解题分析】根据平面直角坐标系中,点所在象限和点的坐标的特点,即可得到答案.【题目详解】∵1>0,2>0,∴在第一象限,故选A.【题目点拨】本题主要考查点的横纵坐标的正负性和点所在的象限的关系,熟记点的横纵坐标的正负性和所在象限的关系,是解题的关键.5、C【分析】按照分式有意义,分母不为零即可求解.【题目详解】A.,x3+1≠1,x≠﹣1;B.,(x+1)2≠1,x≠﹣1;C.,x2+1≠1,x为任意实数;D.,x2≠1,x≠1.故选C.【题目点拨】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.6、D【分析】利用对顶角的性质、等腰三角形的性质、平行线的性质分别判断后即可确定正确的选项.【题目详解】解:A、对顶角相等,故错误,是假命题;B、等腰三角形的两个底角相等,故错误,是假命题;C、两直线平行,同旁内角互补,故错误,是假命题;D、等腰三角形是轴对称图形,对称轴是底边上的高所在直线,故正确,是真命题.故选:D.【题目点拨】考查了命题与定理的知识,解题的关键是了解对顶角的性质、等腰三角形的性质、平行线的性质,难度不大.7、D【解题分析】解:设这三个内角度数分别为x、x、2x,则x+x+2x=180°,解得:x=45°,∴2x=90°,∴这个三角形是等腰直角三角形,故选D.8、A【解题分析】平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.所以Rt△ABC与Rt△DEF的形状和大小完全相同,即Rt△ABC≌Rt△DEF,再根据性质得到相应结论.【题目详解】解:∵Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF

∴Rt△ABC≌Rt△DEF

∴BC=EF,AC=DF

所以只有选项A是错误的,故选A.【题目点拨】本题涉及的是全等三角形的知识,解答本题的关键是应用平移的基本性质.9、A【解题分析】解不等式组得:a<x≤3,因为只有三个整数解,∴0≤a<1;故选A.10、C【题目详解】A、锐角大于它的余角,不一定成立,故本选项错误;B、锐角小于它的补角,故本选项错误;C、钝角大于它的补角,本选项正确;D、锐角与钝角之和等于平角,不一定成立,故本选项错误.故选C.11、B【分析】由,根据三角形的内角和定理可得到的值,再根据对顶角相等可以求出的值,然后由点P与点、对称的特点,求出,进而可以求出的值,最后利用三角形的内角和定理即可求出.【题目详解】∵∴∵,∴又∵点关于对称的对称点分别为点∴,∴∴∴故选:B【题目点拨】本题考查的知识点有三角形的内角和、轴对称的性质,运用这些性质找到相等的角进行角的和差的转化是解题的关键.12、A【分析】据分式的基本性质,x,y的值均扩大为原来的2倍,求出每个式子的结果,看结果等于原式的即是.【题目详解】解:根据分式的基本性质,可知若x,y的值均扩大为原来的2倍,A、,B、,C、,D、,故选A.【题目点拨】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.二、填空题(每题4分,共24分)13、1【分析】把所求多项式进行变形,代入已知条件,即可得出答案.【题目详解】∵,∴;故答案为1.【题目点拨】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.14、B点【解题分析】以每个点为原点,确定其余三个点的坐标,找出满足条件的点,得到答案.【题目详解】解:当以点B为原点时,如图,

A(-1,-1),C(1,-1),

则点A和点C关于y轴对称,符合条件.

故答案为:B点.【题目点拨】本题考查关于x轴、y轴对称的点的坐标和坐标确定位置,掌握平面直角坐标系内点的坐标的确定方法和对称的性质是解题的关键.15、1或1【解题分析】∵一组数据2,3,4,5,x的方差与另一组数据5,1,7,8,9的方差相等,

∴这组数据可能是2,3,4,5,1或1,2,3,4,5,

∴x=1或1,

故答案是:1或1.16、6【解题分析】试题分析:由全等可知:AH=DE,AE=AH+HE,由直角三角形可得:,代入可得.考点:全等三角形的对应边相等,直角三角形的勾股定理,正方形的边长相等17、或【分析】因为BM可以交AD,也可以交CD.分两种情况讨论:①BM交AD于F,则△ABE≌△BAF.推出AF=BE=3,所以FD=EC,连接FE,则四边形ABEF为矩形,所以M为该矩形的对角线交点,所以BM=AC的一半,利用勾股定理得到AE等于5,即可求解;②BM交CD于F,则BF垂直AE(通过角的相加而得)且△BME∽△ABE,则,所以求得BM等于.【题目详解】分两种情况讨论:①BM交AD于F,∵∠ABE=∠BAF=90°,AB=BA,AE=BF,∴△ABE≌△BAF(HL)∴AF=BE,∵BE=3,∴AF=3,∴FD=EC,连接FE,则四边形ABEF为矩形,∴BM=AE,∵AB=4,BE=3,∴AE==5,∴BM=;②BM交CD于F,∵△ABE≌△BCF,∴∠BAE=∠CBF,∵∠BAE+∠BEA=90°,∴∠BEM+∠EBM=90°,∴∠BME=90°,即BF垂直AE,∴△BME∽△ABE,∴,∵AB=4,AE=5,BE=3,∴BM=.综上,故答案为:或【题目点拨】本题考查了正方形的性质和勾股定理,以及三角形的全等和相似,解题的关键是熟知相似三角形的判定与性质.18、(4,0)【分析】根据教学楼及校门的位置确定图书馆位置即可.【题目详解】∵“(0,0)”表示教学楼的位置,“(0,-2)”表示校门的位置,∴图书馆的位置可表示为(4,0).故答案为:(4,0).【题目点拨】本题考查坐标确定位置,弄清题意,确定坐标是解题关键.三、解答题(共78分)19、(1)BG=DE,BG⊥DE,理由见解析;(2)BG和DE还有上述关系:BG=DE,BG⊥DE,理由见解析【分析】(1)由四边形ABCD,CEFG都是正方形,得到CB=CD,CG=CE,∠BCG=∠DCE=90°,于是Rt△BCG≌Rt△DCE,得到BG=DE,∠CBG=∠CDE,根据三角形内角和定理可得到∠DHG=∠GCB=90°,即BG⊥DE.

(2)BG和DE还有上述关系.证明的方法与(1)一样.【题目详解】(1)BG=DE,BG⊥DE.理由:∵四边形ABCD,CEFG都是正方形,∴CB=CD,CG=CE,∠BCG=∠DCE=90°,∴△BCG≌△DCE(SAS),∴BG=DE,∵△BCG≌△DCE,∴∠CBG=∠CDE,而∠BGC=∠DGH,∴∠DHG=∠GCB=90°,即BG⊥DE.∴BG=DE,BG⊥DE;(2)BG和DE还有上述关系:BG=DE,BG⊥DE.∵四边形ABCD,CEFG都是正方形,∴CB=CD,CG=CE,∠BCD=∠GCE=90°∵∠BCG=∠BCD+∠DCG,∠DCE=∠GCE+∠DCG∴∠BCG=∠DCE∴△BCG≌△DCE(SAS),∴BG=DE,∠CBG=∠CDE,又∵∠BKC=∠DKH,∴∠DHK=∠DCB=90°即BG⊥DE.∴BG=DE,BG⊥DE.【题目点拨】本题主要考查正方形的性质,全等三角形的性质和判定,利用全等三角形的性质证得∠CBG=∠CDE,∠CBG=∠CDE是解题的关键.20、(1)见解析;(2),见解析【分析】(1)以点E为圆心,以EA为半径画弧交直线m于点M,连接EM,证明△AEB≌△MEF,根据全等三角形的性质证明;

(2)在直线m上截取AN=AB,连接NE,证明△NAE≌△ABE,根据全等三角形的性质得到EN=EB,∠ANE=∠ABE,证明EN=EF,等量代换即可.【题目详解】(1)如图1,以点E为圆心,以EA为半径画弧交直线m于点M,连接EM,∴,∵,∴,∵,∴,,∴,∴,∵,∴,∵,∴,∴,∴;(2).理由如下:如图2,在直线上截取,连接,∵,AB=BC,∴,∵,∴,,∵,∴,∴,,∵,,∴,∴,∴.【题目点拨】本题考查的是全等三角形的判定和性质、等腰三角形的判定和性质、平行线的性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.21、详见解析【分析】由题意利用平行线性质和直接利用全等三角形的判定方法得出△ABC≌△ECD,即可得出答案.【题目详解】证明:,在和中,(全等三角形的对应角相等),(等量代换).【题目点拨】本题主要考查全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.22、证明见解析.【分析】由,得到,则利用HL证明,得到,即可得到结论成立.【题目详解】证明:,,即.与都为直角三角形,在和中,,,.【题目点拨】本题考查了等角对等边证明边相等,以及全等三角形的判定和性质,解题的关键是熟练掌握HL证明直角三角形全等.23、(Ⅰ)40;25;(Ⅱ)众数为5;中位数是6;平均数是5.8;(Ⅲ)估计该校一周的课外阅读时间大于的学生人数约为360人.【分析】(Ⅰ)根据各组频数之和等于总数即可求出接受调查人数,用第三组频数除以总数得出百分比即可求出m;(Ⅱ)根据“众数是出现次数最多的数”、“数据排序后,第20和21个数的平均数”、“加权平均数计算公式”计算即可;(Ⅲ)由扇形图得课外阅读时间大于的占比20%+10%=30%,用1200×30%即可求解.【题目详解】解:(Ⅰ)6+12+10+8+4=40;,∴m=25;(Ⅱ)∵这组样本数据中,5出现了12次,出现次数最多,∴这组数据的众数为5;∵将这组数据从小到大排列,其中处于中间的两个数均为6,则,∴这组数据的中位数是6;由条形统计图可得,∴这组数据的平均数是5.8;(Ⅲ)(人)答:估计该校一周的课外阅读时间大于的学生人数约为360人.【题目点拨】本题考查了扇形统计图与条形统计图的综合运用、平均数、众数、中位数、用样本估计总体等知识.读

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论