普洱市重点中学2024届数学八上期末质量检测试题含解析_第1页
普洱市重点中学2024届数学八上期末质量检测试题含解析_第2页
普洱市重点中学2024届数学八上期末质量检测试题含解析_第3页
普洱市重点中学2024届数学八上期末质量检测试题含解析_第4页
普洱市重点中学2024届数学八上期末质量检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

普洱市重点中学2024届数学八上期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在中,,将绕点逆时针旋转,使点落在点处,点落在点处,则两点间的距离为()A. B. C. D.2.若a-2b=1,则代数式a2-2ab-2b的值为()A.-1 B.0 C.1 D.23.如图,在中,,垂足为,延长至,取,若的周长为12,则的周长是()A. B. C. D.4.在下列各原命题中,其逆命题为假命题的是()A.直角三角形的两个锐角互余B.直角三角形两条直角边的平方和等于斜边的平方C.等腰三角形两个底角相等D.同角的余角相等5.下列命题中,真命题的个数是()①若,则;②的平方根是-5;③若,则;④所有实数都可以用数轴上的点表示.A.1个 B.2个 C.3个 D.4个6.一正多边形的内角和与外角和的和是1440°,则该正多边形是()A.正六边形 B.正七边形 C.正八边形 D.正九边形7.如图,木工师傅在做完门框后,为防止变形常常象图中所示那样钉上两条斜拉的木条图中的AB,CD两根木条,这样做是运用了三角形的A.全等性 B.灵活性 C.稳定性 D.对称性8.如图,是的角平分线,,交于点.已知,则的度数为()A. B.C. D.9.小明和小刚相约周末到河北剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.设小明的速度为3x米/分,则根据题意所列方程正确的是()A. B.C. D.10.如图,已知点A和直线MN,过点A用尺规作图画出直线MN的垂线,下列画法中错误的是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,将△ABC沿着AB方向,向右平移得到△DEF,若AE=8,DB=2,则CF=______.12.在研究,,这三个数的倒数时发现:,于是称,,这三个数为一组调和数.如果,(),也是一组调和数,那么的值为____.13.的算术平方根是_____.14.如图,在中,,,是的中线,是的角平分线,交的延长线于点,则的长为_______.15.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为_____.16.如图,在中,,平分,交于点,若,,则周长等于__________.17.在中是分式的有_____个.18.如图,在△ABC中∠ABC和∠ACB平分线交于点O,过点O作OD⊥BC于点D,△ABC的周长为21,OD=4,则△ABC的面积是_____.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,一次函数的图象过点A(4,1)与正比例函数()的图象相交于点B(,3),与轴相交于点C.(1)求一次函数和正比例函数的表达式;(2)若点D是点C关于轴的对称点,且过点D的直线DE∥AC交BO于E,求点E的坐标;(3)在坐标轴上是否存在一点,使.若存在请求出点的坐标,若不存在请说明理由.20.(6分)已知:如图在四边形ABCD中,AB∥CD,AD∥BC,延长CD至点E,连接AE,若,求证:21.(6分)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.22.(8分)解方程(1)(2)23.(8分)如图,已知在平面直角坐标系中,△ABC三个顶点的坐标分别是A(1,1),B(4,2),C(3,4).(1)画出△ABC关于y轴对称的△A1B1C1(要求:A与A1,B与B1,C与C1相对应);(2)通过画图,在x轴上确定点Q,使得QA与QB之和最小,画出QA与QB,并直接写出点Q的坐标.点Q的坐标为.24.(8分)如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.25.(10分)用配方法解方程:.26.(10分)在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.过射线AD上一点M作BM的垂线,交直线AC于点N.(1)如图1,点M在AD上,若∠N=15°,BC=2,则线段AM的长为;(2)如图2,点M在AD上,求证:BM=NM;(3)若点M在AD的延长线上,则AB,AM,AN之间有何数量关系?直接写出你的结论,不证明.

参考答案一、选择题(每小题3分,共30分)1、B【分析】延长BE和CA交于点F,根据旋转的性质可知∠CAE=,证明∠BAE=∠ABC,即可证得AE∥BC,得出,即可求出BE.【题目详解】延长BE和CA交于点F∵绕点逆时针旋转得到△AED∴∠CAE=∴∠CAB+∠BAE=又∵∠CAB+∠ABC=∴∠BAE=∠ABC∴AE∥BC∴∴AF=AC=2,FC=4∴BF=∴BE=EF=BF=故选:B【题目点拨】本题考查了旋转的性质,平行线的判定和性质.2、C【分析】已知a−2b的值,将原式变形后代入计算即可求出值.【题目详解】解:∵a−2b=1,∴2b=a-1,∴a2-2ab-2b=a2-a(a-1)-(a-1)=a2-a2+a-a+1)=1,故选:C.【题目点拨】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3、D【解题分析】根据等腰三角形的性质进行求解,得到各边长即可得出答案.【题目详解】∵中,∴是等边三角形∵∴,,,,∵∴∴∵的周长为12∴,,∴的周长是故答案为:D.【题目点拨】本题考查了三角形的周长问题,通过等腰三角形的性质求出各边长是解题的关键.4、D【分析】首先写出各个命题的逆命题,然后进行判断即可.【题目详解】A、逆命题是:两个锐角互余的三角形是直角三角形,是真命题,故此选项不符合题意;B、逆命题是:如果一个三角形有两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形,是真命题,故此选项不符合题意;C、逆命题是:有两个角相等的三角形是等腰三角形,是真命题,故此选项不符合题意;D、逆命题是:如果两个角相等,那么它们是同一个角的余角,是假命题,故此选项符合题意.故选:D.【题目点拨】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.5、B【分析】根据各个选项中的说法可以判断是否为真命题,从而可以解答本题.【题目详解】①若,则,真命题;②的平方根是,假命题;③若,则,假命题;④所有实数都可以用数轴上的点表示,真命题.故答案为:B.【题目点拨】本题考查了真命题的定义以及判断,根据各个选项中的说法可以判断是否为真命题是解题的关键.6、C【分析】依题意,多边形的内角与外角和为1440°,多边形的外角和为360°,根据内角和公式求出多边形的边数.【题目详解】解:设多边形的边数为n,根据题意列方程得,(n﹣2)•110°+360°=1440°,n﹣2=6,n=1.故这个多边形的边数为1.故选:C.【题目点拨】考查了多边形的外角和定理和内角和定理,熟练记忆多边形的内角和公式是解答本题的关键.7、C【解题分析】解:三角形具有稳定性,其他多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变,故这样做是运用了三角形的稳定性故选:C8、B【分析】根据平行线的性质和角平分线的性质即可求解.【题目详解】解:∵∴∠ACB=∵是的角平分线∴=∠BCE=故选:B【题目点拨】此题主要考查平行线的性质和角平分线的性质,灵活运用性质解决问题是解题关键.9、A【分析】根据小明和小刚的速度比是3:4,小明的速度为3x米/分,则小刚的速度为4x米/分,再根据“结果小明比小刚提前4min到达剧院”关系式即可得出答案.【题目详解】小明和小刚的速度比是3:4,小明的速度为3x米/分小刚的速度为4x米/分小明用的时间为,小刚用的时间为所列方程应该为:故选A.【题目点拨】本题考查了分式方程的应用,读懂题意找到关系式是解题的关键.10、A【分析】根据经过直线外一点作已知直线的方法即可判断.【题目详解】解:已知点A和直线MN,过点A用尺规作图画出直线MN的垂线,画法正确的是B、C、D选项,不符合题意.A选项错误,符合题意;故选:A.【题目点拨】本题考查了作图基本作图,解决本题的关键是掌握经过一点作已知直线的垂线的方法.二、填空题(每小题3分,共24分)11、1.【解题分析】根据平移的性质可得AB=DE,然后求出AD=BE,再求出AD的长即为平移的距离.【题目详解】∵△ABC沿AB方向向右平移得到△DEF,

∴AB=DE,

∴AB-DB=DE-DB,

即AD=BE,

∵AE=8,DB=2,

∴AD=12(AE-DB)=12×(8-2)=1,

即平移的距离为1.

∴CF=AD=1,

【题目点拨】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行(或在同一条直线上)且相等,对应线段平行(或在同一条直线上)且相等,对应角相等.12、1【分析】根据题中给出了调和数的规律,可将所在的那组调和数代入题中给出的规律里可列方程求解即可.【题目详解】由题意得:,解得:,

检验:把代入最简公分母:,

故是原分式方程的解.

故答案为:1.【题目点拨】本题主要考查了分式方程的应用,重点在于弄懂题意,准确地找出题目中所给的调和数的相等关系,这是列方程的关键.13、2【题目详解】∵,的算术平方根是2,∴的算术平方根是2.【题目点拨】这里需注意:的算术平方根和的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.14、6【分析】根据等腰三角形的性质可得AD⊥BC,∠BAD=∠CAD=60°,求出∠DAE=∠EAB=30°,根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,从而AD=DF,求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.【题目详解】解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=∠BAD=×60°=30°,∵DF//AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°-60°=30°,∴AD=AB=×12=6,∴DF=6,故选:C.【题目点拨】本题考查的是直角三角形的性质,等腰三角形的性质,平行线的性质,掌握直角三角形30°角所对的直角边等于斜边的一半的性质是解题的关键.15、1【分析】首先根据题意可得MN是AB的垂直平分线,由线段垂直平分线的性质可得AD=BD,再根据△ADC的周长为10可得AC+BC=10,又由条件AB=7可得△ABC的周长.【题目详解】解:∵在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.∴MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长为10,∴AC+AD+CD=AC+BD+CD=AC+BC=10,∵AB=7,∴△ABC的周长为:AC+BC+AB=10+7=1.故答案为1.16、6+6【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC,再求出AB和BD即可.【题目详解】因为在中,,所以所以AD=2CD=4所以AC=因为平分,所以=2所以所以BD=AD=4,AB=2AC=4所以周长=AC+BC+AB=++2+4==6+6故答案为:6+6【题目点拨】考核知识点:含有30°直角三角形性质,勾股定理;理解直角三角形相关性质是关键.17、1【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【题目详解】解:分母中有未知数的有:,共有1个.故答案为:1.【题目点拨】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.18、1【分析】作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质求出OE=OD=4和OF=OD=4,根据三角形面积公式计算即可.【题目详解】解:作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB是∠ABC的平分线,OD⊥BC,OE⊥AB,∴OE=OD=4,同理OF=OD=4,△ABC的面积=×AB×4+×AC×4+×BC×4=1.故答案为:1.【题目点拨】本题主要考查角平分线的性质,解题的关键是掌握角的平分线上的点到角的两边的距离相等.三、解答题(共66分)19、(1)一次函数表达式为:;正比例函数的表达式为:;(2)E(-2,-3);(3)P点坐标为(,0)或(,0)或(0,2)或(0,-2).【分析】(1)将点A坐标代入可求出一次函数解析式,然后可求点B坐标,将点B坐标代入即可求出正比例函数的解析式;(2)首先求出点D坐标,根据DE∥AC设直线DE解析式为:,代入点D坐标即可求出直线DE解析式,联立直线DE解析式和正比例函数解析式即可求出点E的坐标;(3)首先求出△ABO的面积,然后分点P在x轴和点P在y轴两种情况讨论,设出点P坐标,根据列出方程求解即可.【题目详解】解:(1)将点A(4,1)代入得,解得:b=5,∴一次函数解析式为:,当y=3时,即,解得:,∴B(2,3),将B(2,3)代入得:,解得:,∴正比例函数的表达式为:;(2)∵一次函数解析式为:,∴C(0,5),∴D(0,-5),∵DE∥AC,∴设直线DE解析式为:,将点D代入得:,∴直线DE解析式为:,联立,解得:,∴E(-2,-3);(3)设直线与x轴交于点F,令y=0,解得:x=5,∴F(5,0),∵A(4,1),B(2,3),∴,当点P在x轴上时,设P点坐标为(m,0),由题意得:,解得:,∴P点坐标为(,0)或(,0);当点P在y轴上时,设P点坐标为(0,n),由题意得:,解得:,∴P点坐标为(0,2)或(0,-2),综上所示:P点坐标为(,0)或(,0)或(0,2)或(0,-2).【题目点拨】本题考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数的性质以及一次函数图象交点的求法,解题的关键是:(1)根据点的坐标,利用待定系数法求出函数解析式;(2)利用平行直线的系数k相等求出直线DE解析式;(3)求出△ABO的面积,利用方程思想和分类讨论思想解答.20、见解析【分析】根据AB∥CD,AD∥BC,可得四边形ABCD是平行四边形,所以∠B=∠ADC,再由三角形的外角性质可得∠ADC=∠DAE+∠E=2∠E.【题目详解】证明:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴∠B=∠ADC,又∵∠DAE=∠E,∴∠ADC=∠DAE+∠E=2∠E.∴∠B=2∠E.【题目点拨】本题主要考查了平行四边形的判定以及三角形的外角性质,属于基础题,比较简单.21、见解析(2)∠EBC=25°【分析】(1)根据AAS即可推出△ABE和△DCE全等.(2)根据三角形全等得出EB=EC,推出∠EBC=∠ECB,根据三角形的外角性质得出∠AEB=2∠EBC,代入求出即可【题目详解】解(1)证明:∵在△ABE和△DCE中,,∴△ABE≌△DCE(AAS)(2)∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°22、(1)原分式方程的解为;(2)原分式方程的解为.【分析】(1)、(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;【题目详解】(1)解:两边同乘,得解得检验:当时,所以,原分式方程的解为(2)解:两边同乘,得解得检验:当时,所以,原分式方程的解为.【题目点拨】本题考查了解分式方程,注意要检验方程的根.23、(1)见解析;(2)见解析,(2,0)【分析】(1)依据轴对称的性质进行作图,即可得到△A1B1C1;(2)作点A关于x轴的对称点A',连接A'B,交x轴于点Q,则QA与QB之和最小.【题目详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,点Q即为所求,点Q的坐标为(2,0).故答案为:(2,0).【题目点拨】本题考查了利用轴对称作图以及最短距离的问题,解题的关键是最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.24、(1)证明见解析;(2)CD的长为.【分析】(1)因为∠AOB=∠COD=90°,由等量代换可得∠DOB=∠AOC,又因为△AOB和△COD均为等腰直角三角形,所以OC=OD,OA=OB,则△AOC≌△BOD;

(2)由(1)可知△AOC≌△BOD,所以AC=BD=2,∠CAO=∠DBO=45°,由等量代换求得∠CAB=90°,则.【题目详解】(1)证明:∵∠DOB=90°-∠AOD,∠AOC=90°-∠AOD,

∴∠BOD=∠AOC,

又∵OC=OD,OA=OB,

在△AOC和△BOD中,

∴△AOC≌△BOD(SAS);

(2)解:∵△AOC≌△BOD,

∴AC=BD=2,∠CAO=∠DBO=45°,

∴∠CAB=∠CAO+∠BAO=90°,

∴25、或【分析】根据配方法的步骤先两边都除以2,再移项,再配方,最后开方即可得出答案.【题目详解】原方程变形为:配方得即或所以原方程得解为或【题目

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论