2022-2023学年湖北省宜昌市当阳玉泉办事处干溪中学高一数学文模拟试题含解析_第1页
2022-2023学年湖北省宜昌市当阳玉泉办事处干溪中学高一数学文模拟试题含解析_第2页
2022-2023学年湖北省宜昌市当阳玉泉办事处干溪中学高一数学文模拟试题含解析_第3页
2022-2023学年湖北省宜昌市当阳玉泉办事处干溪中学高一数学文模拟试题含解析_第4页
2022-2023学年湖北省宜昌市当阳玉泉办事处干溪中学高一数学文模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年湖北省宜昌市当阳玉泉办事处干溪中学高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.数列,…的前n项和Sn为()A. B. C. D.参考答案:B【考点】8E:数列的求和.【分析】由,利用裂项求和即可求解【解答】解:∵∴===故选B2.(5分)对于任意x∈R,同时满足条件f(x)=f(﹣x)和f(x﹣π)=f(x)的函数是() A. f(x)=sinx B. f(x)=sinxcosx C. f(x)=cosx D. f(x)=cos2x﹣sin2x参考答案:D考点: 抽象函数及其应用.专题: 函数的性质及应用;三角函数的图像与性质.分析: 直接利用已知条件,判断函数的奇偶性,以及函数的周期性,然后判断选项即可.解答: 对于任意x∈R,满足条件f(x)=f(﹣x),说明函数是偶函数,满足f(x﹣π)=f(x)的函数是周期为π的函数.对于A,不是偶函数,不正确;对于B,也不是偶函数,不正确;对于C,是偶函数,但是周期不是π,不正确;对于D,f(x)=cos2x﹣sin2x=cos2x,是偶函数,周期为:π,正确.故选:D.点评: 本题考查抽象函数的奇偶性函数的周期性的应用,基本知识的考查.3.已知实数满足,则的最小值是A.

B.

C.

D.不存在参考答案:B略4.已知向量a=(x,1),b=(-x,x2),则向量a+b

A.与向量c=(0,1)垂直

B.与向量c=(0,1)平行

C.与向量d=(1,-1)垂直

D.与向量d=(1,-1)平行参考答案:B5.函数的定义域为(

).A.

B.

D.且参考答案:C略6.已知基本单位向量,,则的值为()A.1 B.5 C.7 D.25参考答案:B【分析】计算出向量的坐标,再利用向量的求模公式计算出的值.【详解】由题意可得,因此,,故选:B.【点睛】本题考查向量模的计算,解题的关键就是求出向量的坐标,并利用坐标求出向量的模,考查运算求解能力,属于基础题.7.设,,则“”是“”的(

)A.充要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件参考答案:C不能推出,反过来,若则成立,故为必要不充分条件.8.如果执行右面的程序框图,那么输出的()A.10

B.22

C.46

D.参考答案:B略9.若,则下列不等式正确的是

A.

B.

C.

D.参考答案:B10.在中,若,则的形状是().A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定参考答案:B由正弦定理:,故为,又∵,∴,又∵,∴,故.二、填空题:本大题共7小题,每小题4分,共28分11.如果满足∠ABC=60°,,的△ABC有且只有两个,那么的取值范围是

.参考答案:略12.下列几个命题①方程x2+(a﹣3)x+a=0的有一个正实根,一个负实根,则a<0.②函数是偶函数,但不是奇函数.③函数f(x)的值域是,则函数f(x+1)的值域为.④设函数y=f(x)定义域为R,则函数y=f(1﹣x)与y=f(x﹣1)的图象关于y轴对称.⑤一条曲线y=|3﹣x2|和直线y=a(a∈R)的公共点个数是m,则m的值不可能是1.其中正确的有.参考答案:①⑤【考点】命题的真假判断与应用.【专题】证明题.【分析】①由方程x2+(a﹣3)x+a=0的有一个正实根,一个负实根,利用根与系数的关系即可判断出;②要使函数有意义,则,解得x即可判断出;③函数f(x)的值域是,则函数f(x+1)只是把函数y=f(x)的图象项左平移了一个单位,因此值域没改变;④举反例:若y=x(x∈R).则f(x﹣1)=x﹣1与f(1﹣x)=1﹣x关于y轴不对称;⑤一条曲线y=|3﹣x2|和直线y=a(a∈R)的有公共点,则|3﹣x2|=a≥0,可得x2﹣3=±a,即x2=3±a>0,,即可判断出公共点的个数m.【解答】解:①∵方程x2+(a﹣3)x+a=0的有一个正实根,一个负实根,则,即a<0,因此正确;②要使函数有意义,则,解得x=±1,因此y=0(x=±1),故函数既是偶函数,又是奇函数,故不正确;③函数f(x)的值域是,则函数f(x+1)的值域仍然为,故不正确;④举例:若y=x(x∈R).则f(x﹣1)=x﹣1与f(1﹣x)=1﹣x关于y轴不对称,因此不正确;⑤一条曲线y=|3﹣x2|和直线y=a(a∈R)的有公共点,则|3﹣x2|=a≥0,∴x2﹣3=±a,即x2=3±a>0,∴,因此公共点的个数m可以是2,4,故m的值不可能是1.综上可知:其中正确的有①⑤.【点评】熟练掌握一元二次方程的根与系数的关系、函数的图象与性质等是解题的关键.13.设函数f(x)=为奇函数,则实数a=

.参考答案:-1【考点】函数奇偶性的性质.【分析】一般由奇函数的定义应得出f(x)+f(﹣x)=0,但对于本题来说,用此方程求参数的值运算较繁,因为f(x)+f(﹣x)=0是一个恒成立的关系故可以代入特值得到关于参数的方程求a的值.【解答】解:∵函数为奇函数,∴f(x)+f(﹣x)=0,∴f(1)+f(﹣1)=0,即2(1+a)+0=0,∴a=﹣1.故答案为:﹣1.14.已知函数,,是常数,且,则的值为___________________.参考答案:3略15.若对于任意的x∈,不等式≥1恒成立,则实数a的最小值为.参考答案:【考点】函数恒成立问题.【专题】计算题;转化思想;函数的性质及应用.【分析】若对于任意的x∈,不等式≥1恒成立,则对于任意的x∈,不等式a≥2x﹣恒成立,结合函数的单调性,求出函数的最大值,可得答案.【解答】解:若对于任意的x∈,不等式≥1恒成立,即对于任意的x∈,不等式1+ax≥x?2x恒成立,即对于任意的x∈,不等式ax≥x?2x﹣1恒成立,即对于任意的x∈,不等式a≥2x﹣恒成立,由y=2x,x∈为增函数,y=,x∈为减函数,故y=2x﹣,x∈为增函数,故当x=2时,y取最大值,即a≥,故实数a的最小值为,故答案为:.【点评】本题考查的知识点是函数恒成立问题,将问题转化为函数的最值问题,是解答的关键.16.若函数

的图象恒过定点P,则P点的坐标是

.参考答案:略17.已知等比数列的公比为正数,且,则=

;参考答案:3三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)探究函数的最小值,并确定取得最小值时x的值.列表如下:x…0.511.51.71.922.12.22.33457…y…8.554.174.054.00544.0054.0024.044.354.87.57…(1)根据上表判断函数在区间(0,2)上的单调性并给出证明;(2)函数在区间上(2,+)单调性如何?(不需证明)求出函数的最小值及相应x的值参考答案:19.(本小题12分)如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,CD⊥BC(1)求证:PC⊥BC(2)求点A到平面PBC的距离.参考答案:(1)证明:因为PD⊥平面ABCD,BC平面ABCD,所以PD⊥BC。由∠BCD=900,得CD⊥BC,又PDDC=D,PD、DC平面PCD,所以BC⊥平面PCD。因为PC平面PCD,故PC⊥BC。(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等。又点A到平面PBC的距离等于E到平面PBC的距离的2倍。由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F。易知DF=,故点A到平面PBC的距离等于。(方法二)体积法:连结AC。设点A到平面PBC的距离为h。因为AB∥DC,∠BCD=900,所以∠ABC=900。从而AB=2,BC=1,得的面积。由PD⊥平面ABCD及PD=1,得三棱锥P-ABC的体积。因为PD⊥平面ABCD,DC平面ABCD,所以PD⊥DC。又PD=DC=1,所以。由PC⊥BC,BC=1,得的面积。由,,得,故点A到平面PBC的距离等于。20.在△ABC中,内角A、B、C对边长分别是a,b,c,已知c=2,C=(Ⅰ)若△ABC的面积等于;(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.参考答案:【考点】余弦定理;正弦定理.【分析】(I)由C的度数求出sinC和cosC的值,利用余弦定理表示出c2,把c和cosC的值代入得到一个关于a与b的关系式,再由sinC的值及三角形的面积等于,利用面积公式列出a与b的另一个关系式,两个关系式联立即可求出a与b的值;(II)由三角形的内角和定理得到C=π﹣(A+B),进而利用诱导公式得到sinC=sin(A+B),代入已知的等式中,左边利用和差化积公式变形,右边利用二倍角的正弦函数公式变形,分两种情况考虑:若cosA为0,得到A和B的度数,进而根据直角三角形的性质求出a与b的值;若cosA不为0,等式两边除以cosA,得到sinB=2sinA,再利用正弦定理化简得到b=2a,与第一问中余弦定理得到的a与b的关系式联立,求出a与b的值,综上,由求出的a与b的值得到ab的值,再由sinC的值,利用三角形的面积公式即可求出三角形ABC的面积.【解答】解:(I)∵c=2,C=60°,由余弦定理c2=a2+b2﹣2abcosC得:a2+b2﹣ab=4,根据三角形的面积S=,可得ab=4,联立方程组,解得a=2,b=2;(II)由题意sin(B+A)+sin(B﹣A)=4sinAcosA,即sinBcosA=2sinAcosA,当cosA≠0时,得sinB=2sinA,由正弦定理得b=2a,联立方程组解得a=.所以△ABC的面积S=.【点评】此题考查了正弦定理,余弦定理,和差化积公式,二倍角的正弦函数公式,三角形的面积公式,以及特殊角的三角函数值,其中正弦定理及余弦定理很好的解决了三角形的边角关系,熟练掌握定理及公式是解本题的关键.21.如图在四棱锥中,底面是菱形,是AC,BD的交点,PA=PC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论