版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年陕西省西安市第九十九中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知复数z满足,则z=(
)A. B. C. D.参考答案:D试题分析:由得,故选D.2.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一球面上,则该球的体积为()A. B.4π C.2π D.参考答案:D【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.【解答】解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.【点评】本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.3.正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的余弦值是参考答案:B略4.椭圆上一点M到焦点F1的距离为2,N是MF1的中点.则|ON|等于(A)2
(B)4
(C)8
(D)参考答案:B略5.在中,若,则是
(
)
A.等腰三角形
B.等边三角形
C.等腰直角三角形 D.等腰或直角三角形参考答案:D6.若函数满足,则的值为(
)A.3 B.1 C.0 D.-1参考答案:A【分析】先求出,令x=1,求出后,导函数即可确定,再求.【详解】,令x=1,得,解得,∴.∴.故选:A.【点睛】本题考查导数公式的应用及函数值求解,属于基础题.7.为调查中学生近视情况,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A.期望与方差
B.排列与组合
C.独立性检验
D.概率参考答案:C略8.如图,一个几何体的三视图是三个直角三角形,则该几何体的最长的棱长等于()A.2
B.3
C.3 D.9参考答案:B【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个三棱锥,由三视图求出几何元素的长度、判断出线面的位置关系,由图判断出几何体的最长棱,由勾股定理求出即可.【解答】解:由三视图知几何体是一个三棱锥P﹣ABC,直观图如图所示:PC⊥平面ABC,PC=1,且AB=BC=2,AB⊥BC,∴AC=,∴该几何体的最长的棱是PA,且PA==3,故选:B.9.已知集合,,则(
)A.
B.
C.
D.参考答案:C10.若a=3a+1,b=ln2,c=log2sin,则(
)A.b>a>c B.a>b>c C.c>a>b D.b>c>a参考答案:B【考点】对数值大小的比较.【专题】转化思想;数学模型法;函数的性质及应用.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵a=3a+1,化为>0,当0<a≤3时不成立,∴a>3.0<b=ln2<1,c=log2sin<0,∴a>b>c,故选:B.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11.命题:①底面是正多边形,而且侧棱长与底面边长都相等的棱锥是正多面体;②正多面体的面不是三角形,就是正方形;③若长方体的各侧面都是正方形,它就是正多面体;④正三棱锥就是正四面体,其中正确的序号是.参考答案:③12.若函数的反函数为,则________.参考答案:013.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元.参考答案:14.
,则________参考答案:略15.在数列中,,(),则该数列的前2014项的和是
▲
.参考答案:7049略16.一个水平放置的平面图形,其斜二测直观图是一个等腰梯形,其底角为,腰和上底均为1(如图),则平面图形的实际面积为________________.参考答案:略17.已知命题,,则是______________;参考答案:,使sinx>1略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)在△ABC中,,,点C运动时内角满足,求顶点C的轨迹方程.参考答案:解:在中,,由正弦定理得:(2分),即,整理可得:,又因为,即,,所以点的轨迹是以为焦点的双曲线的右支(除去点)(6分)在此双曲线中,即,,所以点的轨迹方程为(10分)
19.(本小题满分12分)我国对PM2.5采用如下标准:PM2.5日均值(微克/立方米)空气质量等级一级二级超标
某地4月1日至15日每天的PM2.5监测数据如茎叶图所示.(Ⅰ)期间刘先生有两天经过此地,这两天此地PM2.5监测数据均未超标.请计算出这两天空气质量恰好有一天为一级的概率;(Ⅱ)从所给15天的数据中任意抽取三天数据,记表示抽到PM2.5监测数据超标的天数,求的分布列及期望.参考答案:(Ⅰ)记“他这两天此地PM2.5监测数据均未超标且空气质量恰好有一天为一级”为事件B,
………5分(Ⅱ)的可能取值为0,1,2,3
………6分
………10分
其分布列为:0123P
………12分20.如图,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,点D是AB的中点.求证:(1)AC⊥BC1;(2)AC1∥平面B1CD.参考答案:【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系.【专题】证明题.【分析】(1)利用线面垂直的判定定理先证明AC⊥平面BCC1B1,BC1?平面BCC1B1,即可证得AC⊥BC1;(2)取BC1与B1C的交点为O,连DO,则OD是三角形ABC1的中位线,OD∥AC1,而AC1?平面B1CD,利用线面平行的判定定理即可得证.【解答】证明:(1)在直三棱柱ABC﹣A1B1C1中,∵CC1⊥平面ABC,∴CC1⊥AC,又AC⊥BC,BC∩CC1=C,∴AC⊥平面BCC1B1∴AC⊥BC1.(2)设BC1与B1C的交点为O,连接OD,BCC1B1为平行四边形,则O为B1C中点,又D是AB的中点,∴OD是三角形ABC1的中位线,OD∥AC1,又∵AC1?平面B1CD,OD?平面B1CD,∴AC1∥平面B1CD.【点评】本题考查直线与平面的平行与垂直,着重考查直线与平面平行的判定定理与直线与平面垂直的判定定理的应用,属于中档题.21.如图,正方体ABCD﹣A1B1C1D1中,E,F分别是BB1,DD1的中点.(I)证明:平面AED∥平面B1FC1;(II)在AE上求一点M,使得A1M⊥平面DAE.参考答案:【考点】直线与平面垂直的判定;平面与平面平行的判定.【分析】(Ⅰ)以点A为原点,以AB、AD、AA1为x、y、z轴建立空间直角坐标系,设正方体的棱长为2,求出平面AED和平面B1FC1的法向量,利用向量共线证明两平面平行;(Ⅱ)设=λ,利用A1M⊥平面DAE,得出⊥,由数量积为0求出λ的值即可.【解答】解:(Ⅰ)证明:建立如图所示的空间直角坐标系O﹣xyz,不妨设正方体的棱长为2,则A(0,0,0),E(2,0,1),D(0,2,0),F(0,2,1),B1(2,0,2),C1(2,2,2);设平面AED的法向量为=(x1,y1,z1),则∴令x1=1,得=(1,0,2),同理可得平面B1FC1的法向量=(1,0,2);∴平面AED∥平面B1FC1;(Ⅱ)由于点M在AE上,∴可设=λ=λ(2,0,1)=(2λ,0,λ),可得M(2λ,0,λ),于是=(2λ,0,λ﹣2);要使A1M⊥平面DAE,需A1M⊥AE,∴?=(2λ,0,λ﹣2)?(2,0,1)=5λ﹣2=0,解得λ=;故当AM=AE时,A1M⊥平面DAE.【点评】本题考查了空间中的平行于垂直关系的应用问题,解题时利用空间向量进行解答,是综合性题目.22.如图,长方体中,,点E是AB的中点.(1)求三棱锥的体积(2)证明:
(3)求二面角的正切值参考答案:(1)解:在三棱锥D1-DCE中,D1D⊥平面DCE,D1D=1在△DCE中,,CD=2,CD2=CE2+DE2
∴CE⊥DE.∴∴三棱锥D1-DCE的体积.…………4分(2)证明:连结AD1,由题可知:四边形ADD1A1是正方形∴A1D⊥AD1
又∵AE⊥平面ADD1A1,A1D平面ADD1A1∴AB⊥AD1
又∵AB平面AD1E,AD1平面AD1E
ABAD1=A∴A1D⊥平面AD1E
又∵D1E平面AD1E∴A1D⊥D1E……………
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绍兴诸暨农商银行招聘真题
- 2023年遵义市务川自治县信访局招聘城镇公益性岗位人员考试真题
- 2023年鄂尔多斯人才发展集团招聘考试真题
- 2023年阿坝州招聘事业单位工作人员考试真题
- 2024年临时工招聘协议条款范本
- 电梯安装工程2024年度安全维护协议
- 房产置换交易协议:旧居换新居
- 德云社合同范本
- 影城播放合同范本
- 2024年办公自动化教案:提升教育行业办公效率
- 《中国心力衰竭诊断和治疗指南2024》解读
- 采购合同增补协议范本2024年
- 3.15 秦汉时期的科技与文化 课件 2024-2025学年七年级历史上学期
- 特种玻璃课件
- 基于创新能力培养的初中物理跨学科实践教学策略
- Unit 2 This is my pencil. Lesson 10(教学设计)-2024-2025学年人教精通版英语三年级上册
- 新版高血压病人的护理培训课件
- 医院等级创建工作汇报
- 2024年江西省公务员录用考试《行测》题(网友回忆版)(题目及答案解析)
- VDA6.3基础培训考核测试卷附答案
- 第01讲 正数和负数、有理数-人教版新七年级《数学》暑假自学提升讲义(解析版)
评论
0/150
提交评论