下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE微专题61三视图——几何体的体积问题一、基础知识:1、常见几何体的体积公式:(SKIPIF1<0底面积,SKIPIF1<0高)(1)柱体:SKIPIF1<0(2)锥体:SKIPIF1<0(3)台体:SKIPIF1<0,其中SKIPIF1<0为上底面面积,SKIPIF1<0为下底面面积(4)球:SKIPIF1<02、求几何体体积要注意的几点(1)对于多面体和旋转体:一方面要判定几何体的类型(柱,锥,台),另一方面要看好该几何体摆放的位置是否是底面着地。对于摆放“规矩”的几何体(底面着地),通常只需通过俯视图看底面面积,正视图(或侧视图)确定高,即可求出体积。(2)对于组合体,首先要判断是由哪些简单几何体组成的,或是以哪个几何体为基础切掉了一部分。然后再寻找相关要素(3)在三视图中,每个图各条线段的长度不会一一给出,但可通过三个图之间的联系进行推断,推断的口诀为“长对正,高平齐,宽相等”,即正视图的左右间距与俯视图的左右间距相等,正视图的上下间距与侧视图的上下间距相等,侧视图的左右间距与俯视图的上下间距相等。二、典型例题:例1:已知一个几何体的三视图如图所示,则该几何体的体积为_________思路:从正视图,侧视图可判断出几何体与锥体相关(带尖儿),从俯视图中可看出并非圆锥和棱锥,而是两者的一个组合体(一半圆锥SKIPIF1<0三棱锥),所以SKIPIF1<0,锥体的高计算可得SKIPIF1<0(利用正视图),底面积半圆的半径为SKIPIF1<0,三角形底边为SKIPIF1<0,高为SKIPIF1<0(俯视图看出),所以SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0答案:SKIPIF1<0例2:已知一棱锥的三视图如图所示,其中侧视图和俯视图都是等腰直角三角形,正视图为直角梯形,则该棱锥的体积为.思路:观察可发现这个棱锥是将一个侧面摆在地面上,而棱锥的真正底面体现在正视图(梯形)中,所以SKIPIF1<0,而棱锥的高为侧视图的左右间距,即SKIPIF1<0,所以SKIPIF1<0答案:SKIPIF1<0例3:若某几何体的三视图如图所示,则此几何体的体积是________.思路:该几何体可拆为两个四棱柱,这两个四棱柱的高均为4(俯视图得到),其中一个四棱柱底面为正方形,边长为2(正视图得到),所以SKIPIF1<0,另一个四棱柱底面为梯形,上下底分别为SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0。故几何体的体积为SKIPIF1<0答案:SKIPIF1<0例4:如下图是一个组合几何体的三视图,则该几何体的体积是___________思路:从三视图中观察可得该组合体是由一个圆柱与一个躺倒的三棱锥拼接而成,对于圆柱可得其底面半径为SKIPIF1<0(正视图),高为SKIPIF1<0(正视图),所以SKIPIF1<0,而棱柱底面为底是SKIPIF1<0(俯视图),高为SKIPIF1<0(正视图)的三角形,棱柱的高为SKIPIF1<0(俯视图),所以可得SKIPIF1<0,所以组合体的体积为SKIPIF1<0答案:SKIPIF1<0例5:某几何体三视图如图所示(正方形边长为SKIPIF1<0),则该几何体的体积为.思路:由正视图与侧视图可得该几何体的轮廓为一个棱柱,从俯视图中可确定该组合体为正方体截掉了两部分,且这两部分刚好都是SKIPIF1<0个圆柱,可拼成SKIPIF1<0个圆柱。所以先计算出正方体的体积SKIPIF1<0,而圆柱的底面半径为SKIPIF1<0,高为SKIPIF1<0,所以SKIPIF1<0,所以组合体的体积为SKIPIF1<0答案:SKIPIF1<0例6:某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A.4B.2SKIPIF1<0C.D.8答案:D思路:由于长方体被平面所截,所以很难直接求出几何体的体积,可以考虑沿着截面再接上一个一模一样的几何体,从而拼成了一个长方体,因为长方体由两个完全一样的几何体拼成,所以所求体积为长方体体积的一半。从图上可得长方体的底面为正方形,且边长为SKIPIF1<0,长方体的高为SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0例7:一空间几何体的三视图如右图所示,则该几何体的体积为__________思路:由主视图观察下方有圆弧形,所以判断有旋转体,结合侧视图与俯视图可判断出几何体下部为一个圆柱(圆柱体的一半),且圆柱的上方摞着一个长方体。所以SKIPIF1<0,长方体的长宽高分别为2,2,4,则SKIPIF1<0,圆柱体的高为4(侧视图看出),底面半径为2(由主视图看出),则SKIPIF1<0,所以SKIPIF1<0答案:SKIPIF1<0例8:已知四棱锥SKIPIF1<0的直观图和三视图如图所示,则三棱锥SKIPIF1<0的体积为__________思路:要求三棱锥SKIPIF1<0的体积,则要确定棱锥的高(SKIPIF1<0到底面SKIPIF1<0的距离)和SKIPIF1<0的面积,从主视图中可判断出棱锥的高SKIPIF1<0,俯视图体现出四边形SKIPIF1<0为矩形,所以SKIPIF1<0的面积为SKIPIF1<0,所以SKIPIF1<0答案:SKIPIF1<0例9:一个几何体的三视图如图所示(单位:cm),则该几何体的体积为_______SKIPIF1<0思路:从俯视图可判断出该几何体的基础应为直三棱柱,但从侧视图与正视图可以看出几何体是直三棱柱切掉了一部分,其中侧视图体现出三棱柱从上底面一直切到下底面,而正视图中的线恰好是截面与侧面形成的棱(切痕),进而可作出直观图,从图中可看出剩余的几何体为一个四棱锥(顶点为SKIPIF1<0,所以SKIPIF1<0,棱锥的高是SKIPIF1<0(侧视图的左右间距),四边形SKIPIF1<0是边长为SKIPIF1<0的正方形(由正视图看出),所以SKIPIF1<0,所以SKIPIF1<0答案:SKIPIF1<0例10:如图,网格纸上的小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0思路:本题很难直接看出棱锥的底面积与高,但通过观察可看出此棱锥可能由正方体SKIPIF1<0(棱长为2)通过切割而成,所以先画出正方体,再根据三视图中的实线虚线判断如何切割,正视图中可看出正方体用前后面的对角线所在平面将下方完全切掉,从左视图可看出正方体的右侧面(虚线)有切痕,俯视图体现出正方体的上底面有切痕。进而可得所求棱锥为一个四棱锥,底面是矩形SKIPIF1<0,宽SKIPIF1<0,长SKIPIF1<0,因为SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西藏农牧学院《食品加工类综合技能训练》2023-2024学年第一学期期末试卷
- 2024版仓储质押贷款协议书3篇
- 二零二五年度房地产投资信托基金资金监管合同3篇
- 无锡城市职业技术学院《供应商履约与合同管理》2023-2024学年第一学期期末试卷
- 2024版标准劳务合作安全合同范本版B版
- 二零二五版国际贸易融资贷款定金合同范本3篇
- 二零二五年油气田开发井筒工程技术服务与地质风险及安全监控协议3篇
- 二零二五年度虫害防治与生态农业园合作服务协议2篇
- 2024房地产委托销售合同
- 2024版特许经营合同范本:独家授权经营协议
- 春季餐饮营销策划
- 文化冲突与民族认同建构-洞察分析
- 企业会计机构的职责(2篇)
- 《疥疮的防治及治疗》课件
- Unit4 What can you do Part B read and write (说课稿)-2024-2025学年人教PEP版英语五年级上册
- 2025年MEMS传感器行业深度分析报告
- 《线控底盘技术》2024年课程标准(含课程思政设计)
- 学校对口帮扶计划
- 仓库仓储安全管理培训课件模板
- 风力发电场运行维护手册
- 河道旅游开发合同
评论
0/150
提交评论