




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年湖南省娄底市冷水江三尖中学高一数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在等差数列{an}中,,则的值为A.5 B.6C.8 D.10参考答案:A解析:由角标性质得,所以=52.已知函数f(x)是奇函数,且当x<0时,函数解析式为:f(x)=1﹣2x,则当x>0时,该函数的解析式为()A.f(x)=﹣1﹣2x B.f(x)=1+2x C.f(x)=﹣1+2x D.f(x)=1﹣2x参考答案:A【考点】函数奇偶性的性质.【分析】设x<0,则﹣x>0,再利用奇函数的定义以及当x<0时f(x)的解析式,求得当x>0时函数的解析式.【解答】解:设x>0,则﹣x<0,函数f(x)是奇函数,由x<0时,f(x)=1﹣2x,可得f(x)=﹣f(﹣x)=﹣(1+2x)=﹣1﹣2x,故选:A.3.定义为n个正数p1,p2,…,pn的“均倒数”.若已知正数数列{an}的前n项的“均倒数”为,又bn=,则+++…+=()A. B. C. D.参考答案:C【考点】8E:数列的求和.【分析】直接利用给出的定义得到=,整理得到Sn=2n2+n.分n=1和n≥2求出数列{an}的通项,验证n=1时满足,所以数列{an}的通项公式可求;再利用裂项求和方法即可得出.【解答】解:由已知定义,得到=,∴a1+a2+…+an=n(2n+1)=Sn,即Sn=2n2+n.当n=1时,a1=S1=3.当n≥2时,an=Sn﹣Sn﹣1=(2n2+n)﹣=4n﹣1.当n=1时也成立,∴an=4n﹣1;∵bn==n,∴==﹣,∴+++…+=1﹣+﹣+…+﹣=1﹣=,∴+++…+=,故选:C4.函数的单调递增区间是(
). A. B. C. D.参考答案:D解:∵,∴,又函数是由及复合而成,易知在定义域上单调递减,而函数在单调递增,在单调递减,根据复合函数的单调性的法则知,函数的单调递增区间是.故选.5.在、、这三个函数中,当时,使恒成立的函数个数是: A.0
B.1
C.2
D.3参考答案:B6.
参考答案:D7.已知角θ的终边过点(4,﹣3),则cosθ=()A. B. C. D.参考答案:A【考点】G9:任意角的三角函数的定义.【分析】根据题意,求出点到坐标原点的距离,利用三角函数的定义求出cosθ的值.【解答】解:已知角θ的终边过点(4,﹣3),所以点到坐标原点的距离为:5;根据三角函数的定义可知:cosθ=;故选A8.若a>1,b<﹣1则函数y=ax+b的图象必不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:B【考点】指数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】根据图象变换可以得到y=ax+b的图象恒过定点(0,1+b),再根据函数的单调性和b<﹣1,即可确定答案.【解答】解:∵y=ax+b的图象是由y=ax的图象向下平移了|b|个单位,又y=ax的图象恒过定点(0,1),∴y=ax+b的图象恒过定点(0,1+b),∵a>1,且b<﹣1则y=ax+b是R上的单调递增函数,且过点(0,1+b),∴函数y=ax+b的图象经过第一、三、四象限,∴函数y=ax+b的图象必不经过第二象限.故选:B.【点评】本题考查了指数函数的单调性与特殊点.对于指数函数要注意它恒过定点(0,1)且以x轴为渐近线,解题过程中要注意运用这些性质.本题解题的关键就在于抓住图象恒过的定点所在的位置,确定直线必过的象限.属于基础题.9.下列函数中,在其定义域内既是奇函数又是减函数的是(
).A.
B.
C.
D.参考答案:B10.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为(
)A.米
B.米
C.200米
D.200米参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.(2016秋?建邺区校级期中)已知函数f(x)=2x﹣2﹣x,若对任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,则实数t的取值范围是.参考答案:(﹣3.+∞)【考点】函数恒成立问题.【专题】转化思想;综合法;函数的性质及应用.【分析】通过判定函数f(x)=2x﹣2﹣x)=2x﹣x在R上单调递增、奇函数,脱掉”f“,转化为恒成立问题,分离参数求解.【解答】解:∵函数f(x)=2x﹣2﹣x)=2x﹣x在R上单调递增,又∵f(﹣x)=﹣(2x﹣2﹣x)=﹣f(x),故f(x)是奇函数,若对任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,?对任意的x∈[1,3],不等式f(x2+tx)>f(﹣4+x)恒成立,?对任意的x∈[1,3],x2+(t﹣1)x+4>0?(t﹣1)x>﹣x2﹣4?t﹣1>﹣(x+,∵,∴t﹣1>﹣4,即t>﹣3.故答案为:(﹣3.+∞)【点评】本题考查了函数的单调性、奇函数,恒成立问题,分离参数法,属于中档题.12.在△ABC中,角A,B,C所对的边分别为a,b,c,已知A=60°,b=1,△ABC的面积为,则a的值为.参考答案:【考点】HP:正弦定理.【分析】根据三角形的面积公式,求出c,然后利用余弦定理即可得到a的值.【解答】解:∵A=60°,b=1,△ABC的面积为,∴S△=,即,解得c=4,则由余弦定理得a2=b2+c2﹣2bccos60°=1+16﹣2×=13,即a=,故答案为:13.直线l1:y=2x与直线l2:ax+by+c=0(abc≠0)相互垂直,当a,b,c成等差数列时,直线l1,l2与y轴围成的三角形的面积S=.参考答案:【考点】IJ:直线的一般式方程与直线的垂直关系.【分析】直线l1:y=2x与直线l2:ax+by+c=0(abc≠0)相互垂直,可得2×(﹣)=﹣1,化为b=2a.当a,b,c成等差数列时,2b=a+c.由ax+by+c=0(abc≠0),令x=0,解得y.联立,解得x=.即可直线l1,l2与y轴围成的三角形的面积S.【解答】解:直线l1:y=2x与直线l2:ax+by+c=0(abc≠0)相互垂直,∴2×(﹣)=﹣1,化为b=2a.当a,b,c成等差数列时,2b=a+c.∴b=2a,c=3a.由ax+by+c=0(abc≠0),令x=0,解得y=﹣.联立,解得x=.直线l1,l2与y轴围成的三角形的面积S=×==.故答案为:.14.已知函数,则的值为
参考答案:515.集合,集合且,则实数_________.参考答案:由,得,所以.16.设表示不超过的最大整数,如,若函数,则的值域为
参考答案:{-1,0}略17.已知集合,则___________。参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知△ABC的三个内角A、B、C的对边分别是,且.(1)求角C的大小;(2)若,△ABC的面积为,求△ABC的周长.参考答案:(1);(2)【分析】(1)通过正弦定理得,进而求出,再根据,进而求得的大小;(2)由正弦定理中的三角形面积公式求出,再根据余弦定理,求得,进而求得的周长.【详解】(1)由题意知,由正弦定理得,又由,则,所以,又因为,则,所以.(2)由三角形的面积公式,可得,解得,又因为,解得,即,所以,所以的周长为【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.19.(本题满分12分)已知的三个内角所对的边分别是,它的周长为+1,且a+b=c.(1)求边c的长;(2)若△ABC的面积为sinC,求cosC的值.参考答案:.解:(1)a+b+c=+1,a+b=c,两式相减,得c=1.
………………5分20.已知函数(1)若1是函数的一个零点,求函数的解析表达式;(2)试讨论函数的零点的个数。参考答案:解:(1)∵1是函数的一个零点,∴将代入得2-6+m=0,解得m=4,∴原函数是。
对于方程有:时,无解
时,
时, 当
当 综上所述,时,原函数有1个零点;或,时,原函数有2个零点时,且,时,原函数有3个零点时
略21.设数列{an}满足,(1)求{an}的通项公式;(2)记,求数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 聚对苯二甲酸戊二醇酯纤维耐水解性能考核试卷
- 耐火材料在高温环境下的结构完整性评估考核试卷
- 中乐器制作与木材识别技巧考核试卷
- 纺织原料市场调研报告考核试卷
- 2025年淄博市桓台县九年级中考语文一模试卷附答案解析
- 幼儿园微课程设计与实施
- 2025水果运输合同范本
- 学校教育教学工作计划
- 2025年国际货物买卖合同标准文本
- 2025办公室租赁合同的签订指南
- 提高学生英语听力能力-英语教师的演讲
- 2025年湖北省八市高三(3月)联考英语试题(含答案和音频)
- 县域产业布局与升级-深度研究
- 第十六周《“粽”享多彩端午深耕文化传承》主题班会
- 日间患者流程护理质量改善项目汇报
- 创意美术网络安全课件
- 上海电信2025年度智慧城市合作协议2篇
- 2024燃煤发电企业安全生产标准化达标评级标准
- 产前检查妇产科教学课件
- 气球婚礼派对合同范例
- 2024无人机测评规范
评论
0/150
提交评论