辽宁省阜新蒙古族自治县蒙古族实验中学2024届高一上数学期末教学质量检测试题含解析_第1页
辽宁省阜新蒙古族自治县蒙古族实验中学2024届高一上数学期末教学质量检测试题含解析_第2页
辽宁省阜新蒙古族自治县蒙古族实验中学2024届高一上数学期末教学质量检测试题含解析_第3页
辽宁省阜新蒙古族自治县蒙古族实验中学2024届高一上数学期末教学质量检测试题含解析_第4页
辽宁省阜新蒙古族自治县蒙古族实验中学2024届高一上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省阜新蒙古族自治县蒙古族实验中学2024届高一上数学期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图象向左平移个单位长度得到函数的图象,下列说法正确的是()A.是奇函数 B.的周期是C.的图象关于直线对称 D.的图象关于点对称2.设,,且,则A. B.C. D.3.已知向量和的夹角为,且,则A. B.C. D.4.形如的函数因其函数图象类似于汉字中的“囧”字,故我们把其生动地称为“囧函数”.若函数(且)有最小值,则当时的“囧函数”与函数的图象交点个数为A. B.C. D.5.若,,,则a,b,c的大小关系为()A. B.C. D.6.若,则的值为A. B.C.2 D.37.直线与圆交点的个数为A.2个 B.1个C.0个 D.不确定8.已知,且点在线段的延长线上,,则点的坐标为()A. B.C. D.9.函数的定义域是()A. B.C. D.10.基本再生数与世代间隔是流行病学基本参数,基本再生数是指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间,在型病毒疫情初始阶段,可以用指数函数模型描述累计感染病例数随时间(单位:天)的变化规律,指数增长率与、近似满足,有学者基于已有数据估计出,.据此,在型病毒疫情初始阶段,累计感染病例数增加至的4倍,至少需要()(参考数据:)A.6天 B.7天C.8天 D.9天二、填空题:本大题共6小题,每小题5分,共30分。11.如图是函数在一个周期内的图象,则其解析式是________12.等比数列中,,则___________13.函数中角的终边经过点,若时,的最小值为.(1)求函数的解析式;(2)求函数的单调递增区间.14.设函数的定义域为,若函数满足条件:存在,使在上的值域是,则称为“倍缩函数”.若函数为“倍缩函数”,则实数的取值范围是_______15.设,则______.16.已知函数f(x)是定义在R上的奇函数,当时,,则函数的零点个数为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的一段图像如图所示.(1)求此函数的解析式;(2)求此函数在上的单调递增区间.18.已知函数(1)求出该函数最小正周期;(2)当时,的最小值是-2,最大值是,求实数a,b的值19.已知函数(,且).(1)求函数的定义域;(2)是否存在实数a,使函数在区间上单调递减,并且最大值为1?若存在,求出a的值;若不存在,请说明理由.20.如图,已知是半径为圆心角为的扇形,是该扇形弧上的动点,是扇形的内接矩形,记为.(1)若的周长为,求的值;(2)求的最大值,并求此时的值.21.如图,平面,,,,分别为的中点.(I)证明:平面;(II)求与平面所成角的正弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】利用三角函数图象变换可得函数的解析式,然后利用余弦型函数的基本性质逐项判断可得出正确选项.【题目详解】由题意可得,对于A,函数是偶函数,A错误:对于B,函数最小周期是,B错误;对于C,由,则直线不是函数图象的对称轴,C错误;对于D,由,则是函数图象的一个对称中心,D正确.故选:D.2、C【解题分析】,则,即,,,即故选点睛:本题主要考查了切化弦及两角和的余弦公式的应用,在遇到含有正弦、余弦及正切的运算时可以将正切转化为正弦及余弦,然后化简计算,本题还运用了两角和的余弦公式并结合诱导公式化简,注意题目中的取值范围3、D【解题分析】根据数量积的运算律直接展开,将向量的夹角与模代入数据,得到结果【题目详解】=8+3-18=8+3×2×3×-18=-1,故选D.【题目点拨】本题考查数量积的运算,属于基础题4、C【解题分析】当时,,而有最小值,故.令,,其图像如图所示:共4个不同的交点,选C.点睛:考虑函数图像的交点的个数,关键在于函数图像的正确刻画,注意利用函数的奇偶性来简化图像的刻画过程.5、A【解题分析】根据指数函数和对数函数的单调性进行判断即可.【题目详解】∵,∴,∴,,,∴.故选:A6、A【解题分析】利用同角三角函数的基本关系,把要求值的式子化为,即可得到答案.【题目详解】由题意,因为,所以,故选A【题目点拨】本题主要考查了三角函数的化简求值问题,其中解答中熟记三角恒等变换的公式,合理化简、运算是解答的关键,着重考查了运算与求解能力.7、A【解题分析】化为点斜式:,显然直线过定点,且定点在圆内∴直线与圆相交,故选A8、C【解题分析】设,根据题意得出,由建立方程组求解即可.【题目详解】设,因为,所以即故选:C【题目点拨】本题主要考查了由向量共线求参数,属于基础题.9、D【解题分析】由函数解析式有意义可得出关于实数的不等式组,由此可求得原函数的定义域.【题目详解】函数有意义,只需且,解得且因此,函数的定义域为.故选:D.10、B【解题分析】根据题意将给出的数据代入公式即可计算出结果【题目详解】因为,,,所以可以得到,由题意可知,所以至少需要7天,累计感染病例数增加至的4倍故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由图可得;,则;由五点作图法可得,解得,所以其解析式为考点:1.三角函数的图像;2.五点作图法;12、【解题分析】等比数列中,由可得.等比数列,构成以为首项,为公比的等比数列,所以【题目点拨】若数列为等比数列,则构成等比数列13、(1)(2),【解题分析】(1)根据角的终边经过点求,再由题意得周期求即可;(2)根据正弦函数的单调性求单调区间即可.【小问1详解】因为角的终边经过点,所以,若时,的最小值为可知,∴【小问2详解】令,解得故单调递增区间为:,14、【解题分析】由题意得,函数是增函数,构造出方程组,利用方程组的解都大于0,求出t的取值范围.【题目详解】因为函数为“倍缩函数”,即满足存在,使在上的值域是,由复合函数单调性可知函数在上是增函数所以,则,即所以方程有两个不等实根,且两根都大于0.令,则,所以方程变为:.则,解得所以实数的取值范围是.故答案为:15、1【解题分析】根据指数式与对数式的互化,得到,,再结合对数的运算法则,即可求解.【题目详解】由,可得,,所以.故答案为:.16、10【解题分析】将原函数的零点转化为方程或的根,再作出函数y=f(x)的图象,借助图象即可判断作答.【题目详解】函数的零点即方程的根,亦即或的根,画出函数y=f(x)的图象和直线,如图所示,观察图象得:函数y=f(x)的图象与x轴,直线各有5个交点,则方程有5个根,方程也有5个根,所以函数的零点有10个.故答案为:10三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)和.【解题分析】(1)根据三角函数的图象求出A,ω,φ,即可确定函数的解析式;(2)根据函数的表达式,即可求函数f(x)的单调递增区间;【题目详解】(1)由函数的图象可知A,,∴周期T=16,∵T16,∴ω,∴y=2sin(x+φ),∵函数的图象经过(2,﹣2),∴φ=2kπ,即φ,又|φ|<π,∴φ;∴函数的解析式为:y=2sin(x)(2)由已知得,得16k+2≤x≤16k+10,即函数的单调递增区间为[16k+2,16k+10],k∈Z当k=﹣1时,为[﹣14,﹣6],当k=0时,为[2,10],∵x∈(﹣2π,2π),∴函数在(﹣2π,2π)上的递增区间为(﹣2π,﹣6)和[2,2π)【题目点拨】本题主要考查三角函数解析式的求法,根据三角函数的图象是解决本题的关键,要求熟练掌握三角函数的图象和性质18、(1)(2),【解题分析】(1)根据正弦函数的周期公式即可求出;(2)根据,求出的范围,即可得到函数的最小值及最大值,列出方程组,即可求a,b【小问1详解】由题意可得最小正周期为;【小问2详解】令,∵,∴,∴由正弦函数性质得,,设,故,,由,解得,故,.19、(1)(2)【解题分析】(1)根据对数型函数定义的求法简单计算即可.(2)利用复合函数的单调性的判断可知,然后依据题意可得进行计算即可.【小问1详解】由题意可得,即,因为,所以解得.故的定义域为.【小问2详解】假设存在实数,使函数在区间上单调递减,并且最大值为1.设函数,由,得,所以在区间上减函数且恒成立,因为在区间上单调递减,所以且,即.又因为在区间上的最大值为1,所以,整理得,解得.因为,所以,所以存在实数,使函数在区间上单调递减,并且最大值为120、(1);(2),.【解题分析】(1)根据周长即可求得,以及;将目标式进行转化即可求得;(2)用表示出,将其转化为关于的三角函数,求该三角函数的最大值即可求得结果.【题目详解】(1),,则若的周长为,则,,平方得,即,解得(舍)或.则.(2)中,,,在中,,,则因为,,当,即时,有最大值.【题目点拨】本题考查已知正切值求齐次式的值,以及几何图形中构造三角函数,并求三角函数最值的问题,涉及倍角公式和辅助角公式的利用,属综合中档题.21、(Ⅰ)略(Ⅱ)【解题分析】(I)证明:连接,在中,分别是的中点,所以,又,所以,又平面ACD,DC平面ACD,所以平面ACD(Ⅱ)在中,,所以而DC平面ABC,,所以平面ABC而平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论