版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省周口市商水县周口中英文学校高一上数学期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数,则的单调递增区间为()A. B.C. D.2.已知函数,且在内有且仅有两个不同的零点,则实数的取值范围是A. B.C. D.3.将函数()的图象向右平移个单位长度后,得到函数的图象,若为偶函数,则()A.5 B.C.4 D.4.设函数,则下列结论错误的是()A.的一个周期为B.的图像关于直线对称C.的图像关于点对称D.在有3个零点5.已知定义在R上的奇函数满足:当时,.则()A.2 B.1C.-1 D.-26.已知直线:,:,:,若且,则的值为A. B.10C. D.27.对于空间中的直线,以及平面,,下列说法正确的是A.若,,,则B.若,,,则C.若,,,则D.若,,,则8.幂函数y=xa,当a取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A(1,0),B(0,1),连接AB,线段AB恰好被其中的两个幂函数y=xa,y=xb的图象三等分,即有BM=MN=NA,那么=()A.0 B.1C. D.29.若函数的零点与的零点之差的绝对值不超过0.25,则可以是A B.C. D.10.如图,把边长为4的正方形ABCD沿对角线AC折起,当直线BD和平面ABC所成的角为时,三棱锥的体积为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若是的最大值,则实数t的取值范围是______12.若直线与圆相切,则__________13.函数的图象必过定点___________14.函数f(x),若f(a)=4,则a=_____15.若,则_________.16.已知圆心为,且被直线截得的弦长为,则圆的方程为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的定义域为,不等式的解集为设集合,且,求实数的取值范围;定义且,求18.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,已知投资1万元时两类产品的收益分别为万元和万元(如图).(1)分别写出两种产品的收益和投资的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大的收益,其最大收益为多少万元?19.已知函数,直线是函数f(x)的图象的一条对称轴.(1)求函数f(x)的单调递增区间;(2)已知函数y=g(x)的图象是由y=f(x)的图象上各点的横坐标伸长到原来的2倍,然后再向左平移个单位长度得到的,若求的值.20.已知函数是奇函数(1)求a的值,并根据定义证明函数在上单调递增;(2)求的值域21.已知函数是二次函数,,(1)求的解析式;(2)解不等式
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】令,则,根据解析式,先求出函数定义域,结合二次函数以及对数函数的性质,即可得出结果.【题目详解】令,则,由真数得,∵抛物线的开口向下,对称轴,∴在区间上单调递增,在区间上单调递减,又∵在定义域上单调递减,由复合函数的单调性可得:的单调递增区间为.故选:A.2、C【解题分析】由,即,分别作出函数和的图象如图,由图象可知表示过定点的直线,当过时,此时两个函数有两个交点,当过时,此时两个函数有一个交点,所以当时,两个函数有两个交点,所以在内有且仅有两个不同的零点,实数的取值范围是,故选C.3、C【解题分析】先由函数图象平移规律可得,再由为偶函数,可得(),则(),再由可得出的值.【题目详解】由题意可知,因为为偶函数,所以(),则(),因为,所以.故选:C.4、D【解题分析】利用辅助角公式化简,再根据三角函数的性质逐个判断即可【题目详解】,对A,最小周期为,故也为周期,故A正确;对B,当时,为的对称轴,故B正确;对C,当时,,又为的对称点,故C正确;对D,则,解得,故在内有共四个零点,故D错误故选:D5、D【解题分析】由奇函数定义得,从而求得,然后由计算【题目详解】由于函数是定义在R上的奇函数,所以,而当时,,所以,所以当时,,故.由于为奇函数,故.故选:D.【题目点拨】本题考查奇函数的定义,掌握奇函数的概念是解题关键.6、C【解题分析】由且,列出方程,求得,,解得的值,即可求解【题目详解】由题意,直线:,:,:,因为且,所以,且,解得,,所以故选C【题目点拨】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线的位置关系,列出方程求解的值是解答的关键,着重考查了推理与计算能力,属于基础题7、D【解题分析】根据空间直线和平面的位置关系对四个选项逐一排除,由此确定正确的选项【题目详解】对于A选项,可能异面,故A错误;对于B选项,可能有,故B错误;对于C选项,的夹角不一定为90°,故C错误;因为,故,因为,故,故D正确,故选D.【题目点拨】本小题主要考查空间两条直线的位置关系,考查直线和平面、平面和平面位置关系的判断,属于基础题.8、A【解题分析】由题意得,代入函数解析式,进而利用指对互化即可得解.【题目详解】BM=MN=NA,点A(1,0),B(0,1),所以,将两点坐标分别代入y=xa,y=xb,得所以,所以.故选:A.【题目点拨】本题主要考查了幂函数的图像及对数的运算,涉及换底公式,属于基础题.9、A【解题分析】因为函数g(x)=4x+2x-2在R上连续,且,,设函数的g(x)=4x+2x-2的零点为,根据零点存在性定理,有,则,所以,又因为f(x)=4x-1的零点为,函数f(x)=(x-1)2的零点为x=1,f(x)=ex-1的零点为,f(x)=ln(x-0.5)的零点为,符合为,所以选A考点:零点的概念,零点存在性定理10、C【解题分析】取的中点为,连接,过作的垂线,垂足为,可以证明平面、平面,求出的面积后利用公式求出三棱锥的体积.【题目详解】取的中点为,连接,过作的垂线,垂足为.因为为等腰直角三角形,故,同理,而,故平面,而平面,故平面平面,因为平面平面,平面,故平面,故为直线BD和平面ABC所成的角,所以.在等腰直角形中,因为,,故,同理,故为等边三角形,故.故.故选:C.【题目点拨】思路点睛:线面角的构造,往往需要根据面面垂直来构建线面垂直,而后者来自线线垂直,注意对称的图形蕴含着垂直关系,另外三棱锥体积的计算,需选择合适的顶点和底面.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】先求出时最大值为,再由是的最大值,解出t的范围.【题目详解】当时,,由对勾函数的性质可得:在时取得最大值;当时,,且是的最大值,所以,解得:.故答案为:12、【解题分析】由直线与圆相切可得圆心到直线距离等与半径,进而列式得出答案【题目详解】由题意得,,解得【题目点拨】本题考查直线与圆的位置关系,属于一般题13、【解题分析】f(x)=k(x-1)-ax-1,x=1时,y=f(x)=-1,∴图象必过定点(1,-1).14、1或8【解题分析】当时,,当时,,分别计算出的值,然后在检验.【题目详解】当时,,解得,满足条件.当时,,解得,满足条件所以或8.故对答案为:1或8【题目点拨】本题考查分段函数根据函数值求自变量,属于基础题.15、##【解题分析】依题意利用诱导公式及二倍角公式计算可得;【题目详解】解:因为,所以.故答案为:.16、【解题分析】由题意可得弦心距d=,故半径r=5,故圆C的方程为x2+(y+2)2=25,故答案为x2+(y+2)2=25三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】由二次不等式的解法得,由集合间的包含关系列不等式组求解即可;由对数函数的定义域可得,利用指数函数的单调性解不等式可得,由定义且,先求出,再求出即可【题目详解】解不等式,得:,即,又集合,且,则有,解得:,故答案为.令,解得:,即,由定义且可知:即,即,故答案为.【题目点拨】本题考查了二次不等式的解法、对数函数的定义域、指数函数的单调性以及新定义问题,属中档题.新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.18、(1)投资债券,投资股票;(2)投资债券类产品万元,股票类投资为4万元,收益最大值为万元.【解题分析】(1)设函数解析式,,代入即可求出的值,即可得函数解析式;(2)设投资债券类产品万元,则股票类投资为万元,年收益为万元,则,代入解析式,换元求最值即可.【题目详解】(1)设.由题意可得:,,所以,,(2)设投资债券类产品万元,则股票类投资为万元,年收益为万元依题意得即.令则,则所以当即时,收益最大为万元,所以投资债券类产品万元,股票类投资为4万元,收益最大值为万元.19、(1);(2)【解题分析】(1)首先化简函数,再根据是函数的一条对称轴,代入求,再求函数的单调递增区间;(2)先根据函数图象变换得到,并代入后,得,再利用角的变换求的值.【题目详解】(1),当时,,得,,,即,令,解得:,,函数的单调递增区间是;(2),,得,,,,【题目点拨】方法点睛:本题考查函数的图象变换,以及的性质,属于中档题型,的横坐标伸长(或缩短)到原来的倍,得到函数的解析式是,若向右(或左)平移()个单位,得到函数的解析式是或.20、(1),证明见解析;(2).【解题分析】(1)由列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绩效考核主管岗位职责
- 开笔礼讲话稿
- 服装购销合同
- 财务主管岗位季度工作总结
- 2024年度版权转让合同违约处理2篇
- 劳动合同合法原则
- 2024年度城市园林绿化吊车租赁合同3篇
- 二零二四年度建筑工程咨询服务合同2篇
- 最高额抵押合同范本
- 2024年度二七区郭家咀铁三官庙N06地块环境保护工程合同2篇
- 实用针灸学-经络养生与康复-暨南大学中国大学mooc课后章节答案期末考试题库2023年
- 沥青路面用木质素纤维检测原始记录
- 0~3岁儿童亲子活动设计与指导(高职学前教育)PPT完整全套教学课件
- 化脓性脑膜炎英文
- 消防演练制度规定
- 龈下刮治术-课件
- 2023燃气安全生产管理人员考试题及答案(200题)
- 统编版小学道德与法治三年级上册心中的“110”--有点警惕性课件
- 读后续写户外惊险之迷路讲义-2023届高三英语写作专项
- 统计分析报告的写作技巧课件
- 2023-2024学年广西壮族自治区南宁市小学语文三年级期末自测试卷附参考答案和详细解析
评论
0/150
提交评论