2024届湖北省各地数学高一上期末考试模拟试题含解析_第1页
2024届湖北省各地数学高一上期末考试模拟试题含解析_第2页
2024届湖北省各地数学高一上期末考试模拟试题含解析_第3页
2024届湖北省各地数学高一上期末考试模拟试题含解析_第4页
2024届湖北省各地数学高一上期末考试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省各地数学高一上期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在正方体中,与平面所成角的余弦值是A. B.C. D.2.函数f(x)=在[—π,π]的图像大致为A. B.C. D.3.有位同学家开了个小卖部,他为了研究气温对热饮销售的影响,经过统计得到一天所卖的热饮杯数(y)与当天气温(x℃)之间的线性关系,其回归方程为=-2.35x+147.77.如果某天气温为2℃,则该小卖部大约能卖出热饮的杯数是A.140 B.143C.152 D.1564.已知向量满足,,则A.4 B.3C.2 D.05.已知,则的大小关系是A. B.C. D.6.已知直线,直线,则与之间的距离为()A. B.C. D.7.已知,则的值是A.1 B.3C. D.8.下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则9.已知等边的边长为2,为内(包括三条边上)一点,则的最大值是A.2 B.C.0 D.10.过点且与直线垂直的直线方程为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合A={x|2x>1},B={x|log2x<0},则∁AB=___12.已知幂函数的图象过点______13.在中,已知,则______.14.函数,函数有______个零点,若函数有三个不同的零点,则实数的取值范围是______.15.若,其中,则的值为______16.下列命题中,正确命题的序号为______①单位向量都相等;②若向量,满足,则;③向量就是有向线段;④模为的向量叫零向量;⑤向量,共线与向量意义是相同的三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(Ⅰ)当时,若关于的方程有且只有两个不同的实根,求实数的取值范围;(Ⅱ)对任意时,不等式恒成立,求的值.18.已知角的终边经过点(1)求的值;(2)求的值19.某篮球队在本赛季已结束的8场比赛中,队员甲得分统计的茎叶图如下:(1)求甲在比赛中得分的平均数和方差;(2)从甲比赛得分在20分以下6场比赛中随机抽取2场进行失误分析,求抽到2场都不超过平均数的概率20.函数的部分图象如图所示.(1)求A,,的值;(2)将函数的图象向右平移个单位长度,得到函数的图象,若,且,求的值.21.设S={x|x=m+n,m、n∈Z}(1)若a∈Z,则a是否是集合S中的元素?(2)对S中的任意两个x1、x2,则x1+x2、x1·x2是否属于S?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】连接,设正方体棱长为1.∵平面,∴∠为与平面所成角.∴故选D2、D【解题分析】先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案【题目详解】由,得是奇函数,其图象关于原点对称.又.故选D【题目点拨】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题3、B【解题分析】一个热饮杯数与当天气温之际的线性关系,其回归方程某天气温为时,即则该小卖部大约能卖出热饮的杯数是故选点睛:本题主要考查的知识点是线性回归方程的应用,即根据所给的或者是做出的线性回归方程,预报的值,这是一些解答题4、B【解题分析】分析:根据向量模的性质以及向量乘法得结果.详解:因所以选B.点睛:向量加减乘:5、B【解题分析】根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,从而可得结果.【题目详解】,,,,故选B.【题目点拨】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.6、D【解题分析】利用两平行线间的距离公式即可求解.【题目详解】直线的方程可化为,则与之间的距离故选:D7、D【解题分析】由题意结合对数的运算法则确定的值即可.【题目详解】由题意可得:,则本题选择D选项.【题目点拨】本题主要考查指数对数互化,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.8、A【解题分析】AD选项,可以用不等式基本性质进行证明;BC选项,可以用举出反例.【题目详解】,显然均大于等于0,两边平方得:,A正确;当时,满足,但,B错误;若,当时,则,C错误;若,,则,D错误.故选:A9、A【解题分析】建立如图所示的平面直角坐标系,则,设点P的坐标为,则故令,则t表示内(包括三条边上)上的一点与点间的距离的平方.结合图形可得当点与点B或C重合时t可取得最大值,且最大值为,故的最大值为.选A点睛:通过建立坐标系,将问题转化为向量的坐标运算可使得本题的解答代数化,在得到向量数量积的表达式后,根据表达式的特征再利用数形结合的思路求解是解题的关键,借助图形的直观性可容易得到答案10、D【解题分析】所求直线的斜率为,故所求直线的方程为,整理得,选D.二、填空题:本大题共6小题,每小题5分,共30分。11、[1,+∞)【解题分析】由指数函数的性质化简集合;由对数函数的性质化简集合,利用补集的定义求解即可.【题目详解】,所以,故答案为.【题目点拨】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且不属于集合的元素的集合.12、3【解题分析】利用幂函数的定义先求出其解析式,进而得出答案【题目详解】设幂函数为常数,幂函数的图象过点,,解得故答案为3【题目点拨】本题考查幂函数的定义,正确理解幂函数的定义是解题的关键13、11【解题分析】由.14、①.1②.【解题分析】(1)画出图像分析函数的零点个数(2)条件转换为有三个不同的交点求实数的取值范围问题,数形结合求解即可.【题目详解】(1)由题,当时,,当时,为二次函数,对称轴为,且过开口向下.故画出图像有故函数有1个零点.又有三个不同的交点则有图像有最大值为.故.故答案为:(1).1(2).【题目点拨】本题主要考查了数形结合求解函数零点个数与根据零点个数求参数范围的问题,属于中档题.15、;【解题分析】因为,所以点睛:三角函数求值三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.16、④⑤【解题分析】由向量中单位向量,向量相等、零向量和共线向量的定义进行判断,即可得出答案.【题目详解】对于①.单位向量方向不同时,不相等,故不正确.对于②.向量,满足时,若方向不同时,不相等,故不正确.对于③.有向线段是有方向的线段,向量是既有大小、又有方向的量.向量可以用有向线段来表示,二者不等同,故不正确,对于④.根据零向量的定义,正确.对于⑤.根据共线向量是方向相同或相反的向量,也叫平行向量,故正确.故答案为:④⑤三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)1.【解题分析】(Ⅰ)当时,,结合图象可得若方程有且只有两个不同的实根,只需即可.(Ⅱ)由题意得只需满足即可,根据函数图象的对称轴与区间的关系及抛物线的开口方向求得函数的最值,然后解不等式可得所求试题解析:(Ⅰ)当时,,∵关于的方程有且只有两个不同的实根,∴,∴.∴实数的取值范围为(Ⅱ)①当,即时,函数在区间上单调递增,∵不等式恒成立,∴,可得,∴解得,与矛盾,不合题意②当,即时,函数在区间上单调递减,∵不等式恒成立,∴,可得∴解得,这与矛盾,不合题意③当,即时,∵不等式恒成立,∴,整理得,即,即,∴,解得.当时,则,故.∴.综上可得点睛:(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系.当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图像的对称轴进行分析讨论求解18、(1),,;(2).【解题分析】(1)直接利用三角函数的坐标定义求解;(2)化简,即得解.【小问1详解】解:,有,,;【小问2详解】解:,将代入,可得19、(1)15,3225;(2).【解题分析】(1)将数据代入公式,即可求得平均数和方差.(2)6场比赛中得分不超过平均数的有4场,可记为,超过平均数的有2场,可记为,分别求得6场比赛中抽出2场,总事件及满足题意的事件,根据古典概型概率公式,即可得答案.【题目详解】解:(1)平均数方差(2)由题意得,6场比赛中得分不超过平均数的有4场,可记为超过平均数的有2场,可记为记从6场比赛中抽出2场,抽到的2场都不超过平均数为事件A从6场比赛中抽出2场,共有以下情形:,共有15个基本事件,事件A包含6个基本事件所以20、(1),,(2)或【解题分析】(1)根据函数的部分图象即可求出A,,然后代入点,由即可求出的值;(2)根据三角函数的图象变换先求出函数的解析式,然后利用,结合即可确定的值.小问1详解】解:由图可知,,,所以,即,所以.将点代入得,,又,所以;【小问2详解】解:由(1)知,由题意有,所以,即,因为,所以,所以或,即或,所以的值为或.21、(1)见解析;(2)见解析.【解题分析】(1)由a=a+0×即可判断;(2)不妨设x1=m+n,x2=p+q,经过运算得x1+x2=(m+n)+(p+q),x1·x2=(mp+2nq)+(mq+np),即可判断.试题解析:(1)a是集合S的元素,因为a=a+0×∈S(2)不妨设x1=m+n,x2=p+q,m、n、p、q∈Z则x1+x2=(m+n)+(p+q)=(m+n)+(p+q),∵m、n、p、q∈Z.∴p+q∈Z,m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论