2024届黑龙江省佳木斯一中高一数学第一学期期末经典模拟试题含解析_第1页
2024届黑龙江省佳木斯一中高一数学第一学期期末经典模拟试题含解析_第2页
2024届黑龙江省佳木斯一中高一数学第一学期期末经典模拟试题含解析_第3页
2024届黑龙江省佳木斯一中高一数学第一学期期末经典模拟试题含解析_第4页
2024届黑龙江省佳木斯一中高一数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省佳木斯一中高一数学第一学期期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线经过点,倾斜角的正弦值为,则的方程为()A. B.C. D.2.已知是定义在上的偶函数,那么的最大值是()A.0 B.C. D.13.若函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|)的部分图象如图所示,将函数f(x)的图象向左平移1个单位长度后,得到函数g(x)的图象,则g(x)=()A.2cosx B.2sinxC.2cosx D.2sinx4.角的终边落在A.第一象限 B.第二象限C.第三象限 D.第四象限5.已知函数(且),若函数图象上关于原点对称的点至少有3对,则实数a的取值范围是().A. B.C. D.6.如果函数在区间上单调递减,则的取值范围是()A. B.C. D.以上选项均不对7.若将函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),再将所得图象向左平移个单位长度,得到函数的图象,则下列说法正确的是()A.的最小正周期为 B.在区间上单调递减C.图象的一条对称轴为直线 D.图象的一个对称中心为8.已知定义在上的奇函数,满足,当时,,则函数在区间上的所有零点之和为()A. B.C. D.9.已知函数,若存在实数,()满足,则的最小值为()A B.C. D.110.函数的大致图象是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;对于集合,,若这两个集合构成“鲸吞”,则的取值为____________12.如图,在四面体ABCD中,AB⊥平面BCD,△BCD是边长为6的等边三角形.若AB=4,则四面体ABCD外接球的表面积为________13.关于的不等式的解集是________14.第24届冬季奥林匹克运动会简称“北京—张家口冬奥会”,将于2022.2.4~2022.2.20在中华人民共和国北京市和张家口市联合举行.某公司为迎接冬奥会的到来,设计了一款扇形的纪念品,扇形圆心角为2,弧长为12cm,则扇形的面积为______.15.已知函数若函数有三个不同的零点,且,则的取值范围是____16.高三年级的一次模拟考试中,经统计某校重点班30名学生的数学成绩均在[100,150](单位:分)内,根据统计的数据制作出频率分布直方图如右图所示,则图中的实数a=__________,若以各组数据的中间数值代表这组数据的平均水平,估算该班的数学成绩平均值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当时,求该函数的值域;(2)若,对于恒成立,求实数m的取值范围.18.已知函数,函数.(1)填空:函数的增区间为___________(2)若命题“”为真命题,求实数的取值范围;(3)是否存在实数,使函数在上的最大值为?如果存在,求出实数所有的值.如果不存在,说明理由.19.设圆的圆心在轴上,并且过两点.(1)求圆的方程;(2)设直线与圆交于两点,那么以为直径的圆能否经过原点,若能,请求出直线的方程;若不能,请说明理由.20.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,已知投资1万元时两类产品的收益分别为万元和万元(如图).(1)分别写出两种产品的收益和投资的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大的收益,其最大收益为多少万元?21.如图,直三棱柱中,分别为的中点.(1)求证:平面;(2)已知,,,求三棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由题可知,则∵直线经过点∴直线的方程为,即故选D2、C【解题分析】∵f(x)=ax2+bx是定义在[a-1,2a]上偶函数,∴a-1+2a=0,∴a=.又f(-x)=f(x),∴b=0,∴,所以.故选C.3、A【解题分析】观察函数图像,求得,再结合函数图像的平移变换即可得解.详解】解:由图可知,,即,又,所以,即,又由图可知,所以,又,即即,将函数f(x)的图象向左平移1个单位长度后,得到函数g(x)的图象,则,故选:A.【题目点拨】本题考查了利用函数图像求解析式,重点考查了函数图像的平移变换,属基础题.4、A【解题分析】根据角的定义判断即可【题目详解】,故为第一象限角,故选A【题目点拨】判断角的象限,将大角转化为一个周期内的角即可5、A【解题分析】由于关于原点对称得函数为,由题意可得,与的图像在的交点至少有3对,结合函数图象,列出满足要求的不等式,即可得出结果.【题目详解】关于原点对称得函数为所以与的图像在的交点至少有3对,可知,如图所示,当时,,则故实数a的取值范围为故选:A【题目点拨】本题考查函数的对称性,难点在于将问题转换为与的图像在的交点至少有3对,考查了运算求解能力和逻辑推理能力,属于难题.6、A【解题分析】先求出二次函数的对称轴,由区间,在对称轴的左侧,列出不等式解出的取值范围【题目详解】解:函数的对称轴方程为:,函数在区间,上递减,区间,在对称轴的左侧,,故选:A【题目点拨】本题考查二次函数图象特征和单调性,以及不等式的解法,属于基础题7、D【解题分析】根据题意函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),再将所得图象向左平移个单位长度,得到函数,即可求出最小正周期,把看成是整体,分别求的单调递减区间、对称轴、对称中心,在分别验证选项即可得到答案.【题目详解】由于函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),故函数的解析式为,再将所得图象向左平移个单位长度,.,故A错误;的单调减区间为,故在区间内不单调递减;图象的对称轴为,不存在使得图象的一条对称轴为直线,故C错误;图象的对称中心的横坐标为,当时,图象的一个对称中心为,故D正确.故选:D.8、D【解题分析】推导出函数是周期为的周期函数,且该函数的图象关于直线对称,令,可得出,转化为函数与函数图象交点横坐标之和,数形结合可得出结果.【题目详解】由于函数为上的奇函数,则,,所以,函数是周期为的周期函数,且该函数的图象关于直线对称,令,可得,则函数在区间上的零点之和为函数与函数在区间上图象交点横坐标之和,如下图所示:由图象可知,两个函数的四个交点有两对关于点对称,因此,函数在区间上的所有零点之和为.故选:D.【题目点拨】本题考查函数零点之和,将问题转化为两个函数的交点,结合函数图象的对称性来求解是解答的关键,考查数形结合思想的应用,属于中等题.9、A【解题分析】令=t,分别解得,,得到,根据参数t的范围求得最小值.【题目详解】当0≤x≤2时,0≤x2≤4,当2<x≤3时,2<3x-4≤5,则[0,4]∩(2,5]=(2,4],令=t∈(2,4],则,,∴,当,即时,有最小值,故选:A.10、A【解题分析】利用奇偶性定义可知为偶函数,排除;由排除,从而得到结果.【题目详解】为偶函数,图象关于轴对称,排除又,排除故选:【题目点拨】本题考查函数图象的识别,对于此类问题通常采用排除法来进行排除,考虑的因素通常为:奇偶性、特殊值和单调性,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、0【解题分析】根据题中定义,结合子集的定义进行求解即可.【题目详解】当时,,显然,符合题意;当时,显然集合中元素是两个互为相反数的实数,而集合中的两个元素不互为相反数,所以集合、之间不存在子集关系,不符合题意,故答案为:12、【解题分析】由题设知,四面体ABCD的外接球也是与其同底等高的三棱柱的外接球,球心为上下底面中心连线EF的中点,所以,所以球的半径所以,外接球的表面积,所以答案应填:考点:1、空间几何体的结构特征;2、空间几何体的表面积13、【解题分析】不等式,可变形为:,所以.即,解得或.故答案为.14、36【解题分析】首先根据弧长公式求出扇形的半径,再根据扇形的面积公式计算可得;【题目详解】解:依题意、cm,所以,即cm,所以;故答案为:15、;【解题分析】作图可知:点睛:利用函数零点情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.16、①.0.005(或)②.126.5(或126.5分)【解题分析】根据频率分布直方图的性质得到参数值,进而求得平均值.详解】由频率分布直方图可得:,∴;该班的数学成绩平均值为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)令,可得,利用二次函数的性质即可求出;(2)令,可得在上恒成立,求出的最大值即可.【小问1详解】令,,则,函数转化为,,则二次函数,,当时,,当时,,故当时,函数的值域为【小问2详解】由于对于上恒成立,令,,则即在上恒成立,所以在上恒成立,由对勾函数的性质知在上单调递增,所以当时,,故时,原不等式对于恒成立18、(1)(写出开区间亦可);(2);(3).【解题分析】(1)根据单调性的定义结合奇偶性可得解;(2)令,问题转化为“”为真命题,根据基本不等式找函数的最小值即可;(3)当时,,记,若函数在上的最大值为,分和,结合对数函数的单调性列式求解即可.【题目详解】(1)函数的增区间为(写出开区间亦可);理由:,为偶函数,任取,,所以的增区间为.(2),令,当且仅当时取“”,“”为真命题可转化为“”为真命题,因为,当且仅当时取“”,所以,所以;(3)由(1)可知,当时,,记,若函数在上的最大值为,则1)当,即时,在上最小值为1,因为图象的对称轴为,所以,解得,符合题意;2)当,即时,在上最大值为1,且恒成立,因为图象是开口向上的抛物线,在的最大值可能是或,若,则,不符合题意,若,则,此时对称轴,由,不合题意0.综上所述,只有符合条件.【题目点拨】本题主要考查了对数型、指数型的复合函数的单调性及最值问题。解题的关键是换元,将复杂的函数化为简单的函数,解决对数型的复合函数时要注意真数大于0这个隐含条件,属于难题.19、(1)(2)或.【解题分析】(1)圆的圆心在的垂直平分线上,又的中点为,,∴的中垂线为.∵圆的圆心在轴上,∴圆的圆心为,因此,圆的半径,(2)设M,N的中点为H,假如以为直径的圆能过原点,则.,设是直线与圆的交点,将代入圆的方程得:.∴.∴的中点为.代入即可求得,解得.再检验即可试题解析:(1)∵圆的圆心在的垂直平分线上,又的中点为,,∴的中垂线为.∵圆的圆心在轴上,∴圆的圆心为,因此,圆的半径,∴圆的方程为.(2)设是直线与圆的交点,将代入圆的方程得:.∴.∴的中点为.假如以为直径的圆能过原点,则.∵圆心到直线的距离为,∴.∴,解得.经检验时,直线与圆均相交,∴的方程为或.点睛:直线和圆的方程的应用,直线和圆的位置关系,务必牢记d与r的大小关系对应的位置关系结论的理解.20、(1)投资债券,投资股票;(2)投资债券类产品万元,股票类投资为4万元,收益最大值为万元.【解题分析】(1)设函数解析式,,代入即可求出的值,即可得函数解析式;(2)设投资债券类产品万元,则股票类投资为万元,年收益为万元,则,代入解析式,换元求最值即可.【题目详解】(1)设.由题意可得:,,所以,,(2)设投资债券类产品万元

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论