版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省四校联考数学高一上期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.等于()A.2 B.12C. D.32.已知集合,且,则的值可能为()A. B.C.0 D.13.一个扇形的弧长与面积都是5,则这个扇形圆心角的弧度数为A. B.C. D.4.设,,,则的大小关系为A. B.C. D.5.若为所在平面内一点,,则形状是A.等腰三角形 B.直角三角形C.正三角形 D.以上答案均错6.《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其外形由圆柱和长方体组合而成.已知某组合体由圆柱和长方体组成,如图所示,圆柱的底面直径为1寸,长方体的长、宽、高分别为3.8寸,3寸,1寸,该组合体的体积约为12.6立方寸,若取3.14,则圆柱的母线长约为()A.0.38寸 B.1.15寸C.1.53寸 D.4.59寸7.下列函数中,在区间上是增函数的是()A. B.C. D.8.“”是“”成立的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要9.某市中心城区居民生活用水阶梯设置为三档,采用边际用水量确定分档水量为:第一档水量为240立方米/户年及以下部分;第二档水量为240立方米/户年以上至360立方米/户年部分(含360立方米/户年);第三档水量为360立方米/户年以上部分.家庭常住人口在4人(不含4人)以上的多人口户,凭户口簿,其水量按每增加一人各档水量递增50立方米/年确定.第一档用水价格为2.1元/立方米;第二档用水价格为3.2元/立方米;第三档用水价格为6.3元/立方米.小明家中共有6口人,去年整年用水花费了1602元,则小明家去年整年的用水量为().A.474立方米 B.482立方米C.520立方米 D.540立方米10.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单的讲就是对于满足一定条件的连续函数,存在点,使得,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知定义在上的函数满足,且当时,.若对任意,恒成立,则实数的取值范围是______12.设是第三象限的角,则的终边在第_________象限.13.已知函数,则=____________14.点是一次函数图象上一动点,则的最小值是______15.如图1,正方形ABCD的边长为2,点M为线段CD的中点.现把正方形纸按照图2进行折叠,使点A与点M重合,折痕与AD交于点E,与BC交于点F.记,则_______.16.已知函数,若a、b、c互不相等,且,则abc的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥P-ABCD中,ABCD为平行四边形,AB⊥AC,PA⊥平面ABCD,且PA=AB=2,AC=1,点E是PD的中点.(1)求证:PB//平面AEC;(2)求D到平面AEC的距离.18.解答题(1);(2)lg20+log1002519.如图,四棱锥的底面是菱形,,平面,是的中点.(1)求证:平面平面;(2)棱上是否存在一点,使得平面?若存在,确定的位置并加以证明;若不存在,请说明理由.20.已知函数是偶函数(1)求的值;(2)将函数的图像向右平移个单位,再将得到的图像上各点的横坐标伸长为原来的4倍(纵坐标不变),得到函数的图像,讨论在上的单调性21.果园A占地约3000亩,拟选用果树B进行种植,在相同种植条件下,果树B每亩最多可种植40棵,种植成本(万元)与果树数量(百棵)之间的关系如下表所示.149161(1)根据以上表格中的数据判断:与哪一个更适合作为与的函数模型;(2)已知该果园的年利润(万元)与的关系为,则果树数量为多少时年利润最大?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】利用对数的运算法则即可得出【题目详解】原式=故选C.【题目点拨】本题考查了对数的运算法则,属于基础题2、C【解题分析】化简集合得范围,结合判断四个选项即可【题目详解】集合,四个选项中,只有,故选:C【题目点拨】本题考查元素与集合的关系,属于基础题3、D【解题分析】,又,故选D考点:扇形弧长公式4、B【解题分析】利用指数函数与对数函数的单调性判断出的取值范围,从而可得结果.【题目详解】,,,,故选B.【题目点拨】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.5、A【解题分析】根据向量的减法运算可化简已知等式为,从而得到三角形的中线和底边垂直,从而得到三角形形状.详解】三角形的中线和底边垂直是等腰三角形本题正确选项:【题目点拨】本题考查求解三角形形状的问题,关键是能够通过向量的线性运算得到数量积关系,根据数量积为零求得垂直关系.6、C【解题分析】先求出长方体的体积,进而求出圆柱的体积,利用求出的圆柱体体积和圆柱的底面半径为0.5寸,求出圆柱的母线长【题目详解】由题意得,长方体的体积为(立方寸),故圆柱的体积为(立方寸).设圆柱的母线长为l,则由圆柱的底面半径为0.5寸,得,计算得:(寸).故选:C7、B【解题分析】根据函数单调性的定义和性质分别进行判断即可【题目详解】解:对于选项A.的对称轴为,在区间上是减函数,不满足条件对于选项B.在区间上是增函数,满足条件对于选项C.在区间上是减函数,不满足条件对于选项D.在区间上是减函数,不满足条件故满足条件的函数是故选:B【题目点拨】本题主要考查函数单调性的判断,要求熟练掌握常见函数的单调性,属基础题8、B【解题分析】通过和同号可得前者等价于或,通过对数的性质可得后者等价于或,结合充分条件,必要条件的概念可得结果.【题目详解】或,或,即“”是“”成立必要不充分条件,故选:B.【题目点拨】本题主要考查了不等式的性质以及充分条件,必要条件的判定,属于中档题.9、D【解题分析】根据题意,建立水费与用水量的函数关系式,即可求解.【题目详解】设小明家去年整年用水量为x,水费为y.若时,则;若时,则;若时,则.令,解得:故选:D10、C【解题分析】根据已知定义,将问题转化为方程有解,然后逐项进行求解并判断即可.【题目详解】根据定义可知:若有不动点,则有解.A.令,所以,此时无解,故不是“不动点”函数;B.令,此时无解,,所以不是“不动点”函数;C.当时,令,所以或,所以“不动点”函数;D.令即,此时无解,所以不是“不动点”函数.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据题意求出函数和图像,画出图像根据图像解题即可.【题目详解】因为满足,即;又由,可得,因为当时,所以当时,,所以,即;所以当时,,所以,即;根据解析式画出函数部分图像如下所示;因为对任意,恒成立,根据图像当时,函数与图像交于点,即的横坐标即为的最大值才能符合题意,所以,解得,所以实数的取值范围是:.故答案为:.12、二或四【解题分析】根据是第三象限角,得到,,再得到,,然后讨论的奇偶可得答案.【题目详解】因为是第三象限角,所以,,所以,,当为偶数时,为第二象限角,当为奇数时,为第四象限角.故答案为:二或四.13、【解题分析】由函数解析式,先求得,再求得代入即得解.【题目详解】函数,则==,故答案为.【题目点拨】本题考查函数值的求法,属于基础题.14、【解题分析】把点代入函数的解析式得到,然后利用基本不等式求最小值.【题目详解】由题意可知,又因为,所以,当且仅当即时等号成立所以的最小值是.故答案为:.15、【解题分析】设,则,利用勾股定理求得,进而得出,根据正弦函数的定义求出,由诱导公式求出,结合同角的三角函数关系和两角和的正弦公式计算即可.【题目详解】设,则,在中,,所以,即,解得,所以,所以在中,,则,又,所以.故答案为:16、【解题分析】画出函数的图象,根据互不相等,且,我们令,我们易根据对数的运算性质,及c的取值范围得到abc的取值范围,即可求解【题目详解】由函数函数,可得函数的图象,如图所示:若a,b,c互不相等,且,令,则,,故,故答案为【题目点拨】本题主要考查了对数函数图象与性质的综合应用,其中画出函数图象,利用图象的直观性,数形结合进行解答是解决此类问题的关键,着重考查了数形结合思想,以及分析问题和解答问题的能力,属于中档试题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】(1)连接交于,连接,则可得,再由E是PD的中点,则可利用三角形中位线定理可得∥,然后利用线面平行的判定定理可证得结论;(2)由已知条件可证明,都为直角三角形,所以可求出,从而可求出的面积,然后利用等体积法可求出D到平面AEC的距离.【小问1详解】连接交于,连接,因为四边形为平行四边形,所以,因为点E是PD的中点,所以∥,因为平面,平面,所以∥平面,【小问2详解】因为∥,,所以,,因为平面,平面,所以,因为,、平面,所以平面,因为平面,所以,在直角中,,同理,在等腰中,,取的中点,连接,则∥,,因平面,所以平面,,设D到平面AEC的距离为,由,得,所以,得,所以D到平面AEC距离为18、(1)1;(2)2.【解题分析】(1)利用对数的运算性质可求得原式=lg10=1;(2)同理可求得原式=2log55=2;【题目详解】(1)(2)lg20+log10025【题目点拨】本题考查对数的运算性质,熟练掌握积、商、幂的对数的运算性质是解决问题的关键,属于中档题19、(1)见解析(2)点为的中点【解题分析】(1)证面面垂直,可先由线面垂直入手即,进而得到面面垂直;(2)通过构造平行四边形,得到线面平行.解析:(1)连接,因为底面是菱形,,所以为正三角形.因为是的中点,所以,因为面,,∴,因为,,,所以.又,所以面⊥面.(2)当点为的中点时,∥面.事实上,取的中点,的中点,连结,,∵为三角形的中位线,∴∥且,又在菱形中,为中点,∴∥且,∴∥且,所以四边形平行四边形.所以∥,又面,面,∴∥面,结论得证.点睛:这个题目考查了线面平行的证明,线面垂直的证明.一般证明线面平行是从线线平行入手,通过构造平行四边形,三角形中位线,梯形底边等,找到线线平行,再证线面平行.证明线线垂直也可以从线面垂直入手.20、(1);(2)单调递减区间,,单调增区间.【解题分析】(1)根据三角函数奇偶性即可求出的值;(2)根据三角函数的图象变换关系求出的解析式,结合函数的单调性进行求解即可【题目详解】(1)∵函数是偶函数,∴,,又,∴;(2)由(2)知,将的图象向右平移个单位后,得到,再将得到的图像上各点的横坐标伸长为原来的4倍(纵坐标不变),得到,当,,即,时,的单调递减,当,,即,时,的单调递增,因此在,的单调递减区间,,单调增区间21、(1)更适合作为与的函数模型(2)果树数量为时年利润最大【解题分析】(1)将点代入和,求出两个函数,然后将和代入,看哪
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院房屋租赁合同
- 夫妻婚内约定协议书
- 场地承包经营合同
- 2025版新型能源设备买卖及购销合同范本3篇
- 2025年全球及中国硬面耐磨板行业头部企业市场占有率及排名调研报告
- 2025-2030全球超高速电主轴行业调研及趋势分析报告
- 2025年全球及中国蒸发光散射检测器用氮气发生器行业头部企业市场占有率及排名调研报告
- 2025-2030全球摩托车涂料行业调研及趋势分析报告
- 二零二四年度研学旅行课程资源采购合同3篇
- 二零二四年度员工开除后的离职补偿及社会保险合同3篇
- 寺院消防安全培训课件
- 比摩阻-管径-流量计算公式
- 专题23平抛运动临界问题相遇问题类平抛运和斜抛运动
- GB/T 42430-2023血液、尿液中乙醇、甲醇、正丙醇、丙酮、异丙醇和正丁醇检验
- 五年级数学应用题100道
- 西方经济学(第二版)完整整套课件(马工程)
- 高三开学收心班会课件
- GB/T 33688-2017选煤磁选设备工艺效果评定方法
- 科技计划项目申报培训
- 591食堂不合格食品处置制度
- 黑布林绘本 Dad-for-Sale 出售爸爸课件
评论
0/150
提交评论