版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西省宝鸡市凤县中学数学高一上期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知平面向量,,且,则实数的值为()A. B.C. D.2.下列函数中,在区间上为增函数的是()A. B.C. D.3.若函数的零点与的零点之差的绝对值不超过0.25,则可以是A B.C. D.4.在中,若,则的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形5.中国古代十进制的算筹记数法在世界数学史上是一个伟大的创造.据史料推测,算筹最晚出现在春秋晚期或战国初年.算筹记数的方法是:个位、百位、万位、…上的数按纵式的数码摆出;十位、千位、十万位、…上的数按横式的数码摆出,如可用算筹表示为.这个数字的纵式与横式的表示数码如图所示,则的运算结果用算筹表示为()A. B.C. D.6.已知直线,直线,则与之间的距离为()A. B.C. D.7.已知是锐角三角形,,,则A. B.C. D.与的大小不能确定8.在线段上任取一点,则此点坐标大于1的概率是()A. B.C. D.9.在区间上任取一个数,则函数在上的最大值是3的概率为()A. B.C. D.10.已知直线:与:平行,则的值是().A.或 B.或C.或 D.或二、填空题:本大题共6小题,每小题5分,共30分。11.若在幂函数的图象上,则______12.已知函数的图上存在一点,函数的图象上存在一点,恰好使两点关于直线对称,则满足上述要求的实数的取值范围是___________13.漏斗作为中国传统器具而存在于日常生活之中,某漏斗有盖的三视图如图所示,其中俯视图为正方形,则该漏斗的容积为不考虑漏斗的厚度______,若该漏斗存在外接球,则______.14.已知函数是定义在上的偶函数,且在区间上单调递减,若实数满足,则的取值范围是______15.已知角的终边过点,则__________16.写出一个同时具有下列性质①②③的函数_________①在R上单调递增;②;③三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)化简:;(2)已知,求的值.18.已知平面直角坐标系内四点,,,.(1)判断的形状;(2)A,B,C,D四点是否共圆,并说明理由.19.已知函数.(1)求的定义域;(2)讨论的单调性;(3)求在区间[,2]上的值域.20.已知定义在R上的函数满足:①对任意实数x,y,都有;②对任意(1)求;(2)判断并证明函数的奇偶性;(3)若,直接写出的所有零点(不需要证明)21.已知实数,且满足不等式.(1)解不等式;(2)若函数在区间上有最小值,求实数的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】根据垂直向量坐标所满足的条件计算即可【题目详解】因为平面向量,,且,所以,解得故选:C2、B【解题分析】利用基本初等函数的单调性可得出合适的选项.【题目详解】函数、在区间上为减函数,函数在区间上为增函数,函数在区间上不单调.故选:B.3、A【解题分析】因为函数g(x)=4x+2x-2在R上连续,且,,设函数的g(x)=4x+2x-2的零点为,根据零点存在性定理,有,则,所以,又因为f(x)=4x-1的零点为,函数f(x)=(x-1)2的零点为x=1,f(x)=ex-1的零点为,f(x)=ln(x-0.5)的零点为,符合为,所以选A考点:零点的概念,零点存在性定理4、D【解题分析】利用诱导公式和两角和差的正弦公式、正弦的二倍角公式化简已知条件,再结合角的范围即可求解.【题目详解】因为,由可得:,即,所以,所以,所以或,因为,,所以或,所以的形状为等腰三角形或直角三角形,故选:D.5、A【解题分析】先利用指数和对数运算化简,再利用算筹表示法判断.【题目详解】因为,用算筹记数表示为,故选:.6、D【解题分析】利用两平行线间的距离公式即可求解.【题目详解】直线的方程可化为,则与之间的距离故选:D7、A【解题分析】分析:利用作差法,根据“拆角”技巧,由三角函数的性质可得.详解:将,代入,,可得,,由于是锐角三角形,所以,,,,所以,,综上,知.故选A点睛:本题主要考查三角函数的性质,两角和与差的三角函数以及作差法比较大小,意在考查学生灵活运用所学知识解答问题的能力,属于中档题.解答本题的关键是运用好“拆角”技巧.8、B【解题分析】设“所取点坐标大于1”为事件A,则满足A的区间为[1,3]根据几何概率的计算公式可得,故选B.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率9、A【解题分析】设函数,求出时的取值范围,再根据讨论的取值范围,判断是否能取得最大值,从而求出对应的概率值【题目详解】在区间上任取一个数,基本事件空间对应区间的长度是,由,得,∴,∴的最大值是或,即最大值是或;令,得,解得;又,∴;∴当时,,∴在上的最大值是,满足题意;当时,,∴函数在上的最大值是,由,得,的最大值不是;10、C【解题分析】当k-3=0时,求出两直线的方程,检验是否平行;当k-3≠0时,由一次项系数之比相等且不等于常数项之比,求出k的值解:由两直线平行得,当k-3=0时,两直线方程分别为y=-1和y=3/2,显然两直线平行.当k-3≠0时,由,可得k=5.综上,k的值是3或5,故选C二、填空题:本大题共6小题,每小题5分,共30分。11、27【解题分析】由在幂函数的图象上,利用待定系数法求出幂函数的解析式,再计算的值【题目详解】设幂函数,,因为函数图象过点,则,,幂函数,,故答案为27【题目点拨】本题主要考查了幂函数的定义与解析式,意在考查对基础知识的掌握情况,是基础题12、【解题分析】函数g(x)=lnx的反函数为,若函数f(x)的图象上存在一点P,函数g(x)=lnx的图象上存在一点Q,恰好使P、Q两点关于直线y=x对称,则函数g(x)=lnx的反函数图象与f(x)图象有交点,即在x∈R上有解,,∵x∈R,∴∴即.三、13、①.②.0.5【解题分析】先将三视图还原几何体,然后利用长方体和锥体的体积公式求解容积即可;设该漏斗外接球的半径为,设球心为,利用,列式求解的值即可.【题目详解】由题中的三视图可得,原几何体如图所示,其中,,正四棱锥的高为,,,所以该漏斗的容积为;正视图为该几何体的轴截面,设该漏斗外接球的半径为,设球心为,则,因为,又,所以,整理可得,解得,所以该漏斗存在外接球,则故答案为:①;②.14、【解题分析】由函数的奇偶性与单调性分析可得,结合对数的运算性质变形可得,从而可得结果【题目详解】因为函数是定义在上的偶函数,且在区间上单调递减,所以,又由,则原不等式变形可得,解可得:,即的取值范围为,故答案为【题目点拨】本题主要考查函数的单调性与奇偶性的综合应用,考查了指数函数的单调性以及对数的运算,意在考查综合应用所学知识解答问题的能力,属于基础题15、【解题分析】∵角的终边过点(3,-4),∴x=3,y=-4,r=5,∴cos=故答案为16、(答案不唯一,形如均可)【解题分析】由指数函数的性质以及运算得出.【题目详解】对函数,因在R上单调递增,所以在R上单调递增;,.故答案为:(答案不唯一,形如均可)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)-1(2)-3【解题分析】(1)根号下是,开方后注意,而,从而所求值为.(2)利用诱导公式原式可以化简为,再分子分母同时除以,就可以得到一个关于的分式,代入其值就可以得到所求值为.解析:(1).(2).18、(1)是等腰直角三角形(2)A,B,C,D四点共圆;理由见解析【解题分析】(1)利用两点间距离公式可求得,再利用斜率公式可得到,即可判断三角形形状;(2)由(1)先求得的外接圆,再判断点是否在圆上即可【题目详解】解:(1),,,又,,即,∴是等腰直角三角形(2)A,B,C,D四点共圆;由(1),设的外接圆的圆心为,则,即,解得,此时,所以的外接圆的方程为,将D点坐标代入方程得,即D点在的外接圆上.∴A,B,C,D四点共圆【题目点拨】本题考查两点间距离公式的应用,考查斜率公式的应用,考查三角形的外接圆,考查圆的方程,考查运算能力19、(1)(2)函数在上为减函数(3)【解题分析】(1)直接令真数大于0即可得解;(2)由和,结合同增异减即可得解;(3)直接利用(2)的单调性可直接得值域.【小问1详解】由,得,解得.所以定义域为;小问2详解】由在上为增函数,且为减函数,所以在上为减函数;【小问3详解】由(2)知函数单调递减,因为,,所以在区间上的值域为.20、(1)(2)为偶函数,证明见解析(3)【解题分析】(1)令,化简可求出,(2)令,则,化简后结合函数奇偶性的定义判断即可,(3)利用赋值求解即可【小问1详解】令,则,,得或,因对任意,所以【小问2详解】为偶函数证明:令,则,得,所以为偶函数【小问3详解】令,则,因为,所以,当时,,当时,,当时,,当时,,……
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《营养膳食与卫生》课程标准
- 《行政职业能力测验》山西省晋城市高平市2024年公务员考试模拟试题含解析
- 2024年农研所上半年工作总结
- 《知情保密原则》课件
- 《华为战略管理》课件
- 《车辆运行安全管理》课件
- 2019年高考语文试卷(新课标Ⅱ卷)(解析卷)
- 康复口腔科护士的职业发展
- 2023-2024年项目部安全管理人员安全培训考试题综合题
- 2024企业主要负责人安全培训考试题附答案(综合题)
- 北京市海淀区2020-2021学年度第一学期期末初三物理检测试卷及答案
- 医用冰箱温度登记表
- 《洁净工程项目定额》(征求意见稿)
- 家庭室内装饰装修工程保修单
- 小学语文课堂提问有效性策略研究方案
- 物业上门维修收费标准
- ATS技术交流(新型发动机智能恒温节能冷却系统)100318
- 手术区皮肤的消毒和铺巾ppt课件
- 2022年度培训工作总结
- 应急照明装置安装施工方法
- 静力触探技术标准
评论
0/150
提交评论