




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省洛阳市理工学院附中2024届高一数学第一学期期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆上的一段弧长等于该圆的内接正方形的边长,则这段弧所对的圆周角的弧度数为()A. B.C. D.2.已知函数在上的值域为R,则a的取值范围是A. B.C. D.3.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学学习和研究中,我们要学会以形助数.则在同一直角坐标系中,与的图像可能是()A. B.C. D.4.函数,的最小正周期是()A. B.C. D.5.已知某扇形的面积为,圆心角为,则该扇形的半径为()A.3 B.C.9 D.6.幂函数,当时为减函数,则实数的值为A.或2 B.C. D.7.已知,则函数()A. B.C. D.8.已知直线经过点,,则该直线的斜率是A. B.C. D.9.设全集,集合,,则()A. B.C. D.10.直线l过点A(3,4),且与点B(-3,2)的距离最远,则直线l的方程为()A.3x-y-5=0 B.3x-y+5=0C.3x+y+13=0 D.3x+y-13=0二、填空题:本大题共6小题,每小题5分,共30分。11.若点在函数的图象上,则的值为______.12.如图,已知四棱锥P-ABCD,底面ABCD为正方形,PA⊥平面ABCD.给出下列命题:①PB⊥AC;②平面PAB与平面PCD的交线与AB平行;③平面PBD⊥平面PAC;④△PCD为锐角三角形.其中正确命题的序号是________13.在平面直角坐标系xOy中,角α与角β均以x轴的非负半轴为始边,它们的终边关于坐标原点对称.若sinα=114.若函数,则________15.函数的定义域为___16.已知函数是定义在上的奇函数,且,则________,________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其中.(1)若是周期为的偶函数,求及的值.(2)若在上是增函数,求的最大值.(3)当时,将函数的图象向右平移个单位,再向上平移1个单位,得到函数的图象,若在上至少含有10个零点,求b的最小值.18.计算:(1);(2)已知,求的值19.已知,,,请在①②,③中任选一个条件,补充在横线上(1)求的值;(2)求的值20.已知.(1),求和的值;(2)若,求的值.21.已知幂函数为偶函数(1)求的解析式;(2)若函数在区间(2,3)上为单调函数,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】求出圆内接正方形边长(用半径表示),然后由弧度制下角的定义可得【题目详解】设此圆的半径为,则正方形的边长为,设这段弧所对的圆周角的弧度数为,则,解得,故选:C.【题目点拨】本题考查弧度制下角的定义,即圆心角等于所对弧长除以半径.本题属于简单题2、A【解题分析】利用分段函数,通过一次函数以及指数函数判断求解即可【题目详解】解:函数在上的值域为R,当函数的值域不可能是R,可得,解得:故选A【题目点拨】本题考查分段函数的应用,函数的最值的求法,属于基础题.3、B【解题分析】结合指数函数和对数函数的图像即可.【题目详解】是定义域为R的增函数,:-x>0,则x<0.结合选项只有B符合故选:B4、C【解题分析】利用正弦型函数周期公式直接计算作答.【题目详解】函数的最小正周期.故选:C5、A【解题分析】根据扇形面积公式求出半径.【题目详解】扇形的面积,解得:故选:A6、C【解题分析】∵为幂函数,∴,即.解得:或.当时,,在上为减函数;当时,,在上为常数函数(舍去),∴使幂函数为上的减函数的实数的值.故选C.考点:幂函数的性质.7、A【解题分析】根据,令,则,代入求解.【题目详解】因为已知,令,则,则,所以,‘故选:A8、D【解题分析】根据斜率公式,,选D.9、B【解题分析】先求出集合B,再根据交集补集定义即可求出.【题目详解】,,,.故选:B.10、D【解题分析】由题意确定直线斜率,再根据点斜式求直线方程.【题目详解】由题意直线l与AB垂直,所以,选D.【题目点拨】本题考查直线斜率与直线方程,考查基本求解能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】将点代入函数解析式可得的值,再求三角函数值即可.【题目详解】因为点在函数的图象上,所以,解得,所以,故答案为:.12、②③【解题分析】设AC∩BD=O,由题意证明AC⊥PO,由已知可得AC⊥PA,与在同一平面内过一点有且只有一条直线与已知直线垂直矛盾说明①错误;由线面平行的判定和性质说明②正确;由线面垂直的判定和性质说明③正确;由勾股定理即可判断,说明④错误【题目详解】设AC∩BD=O,如图,①若PB⊥AC,∵AC⊥BD,则AC⊥平面PBD,∴AC⊥PO,又PA⊥平面ABCD,则AC⊥PA,在平面PAC内过P有两条直线与AC垂直,与在同一平面内过一点有且只有一条直线与已知直线垂直矛盾,①错误;②∵CD∥AB,则CD∥平面PAB,∴平面PAB与平面PCD的交线与AB平行,②正确;③∵PA⊥平面ABCD,∴平面PAC⊥平面ABCD,又BD⊥AC,∴BD⊥平面PAC,则平面PBD⊥平面PAC,③正确;④∵PD2=PA2+AD2,PC2=PA2+AC2,AC2=AD2+CD2,AD=CD,∴PD2+CD2=PC2,∴④△PCD为直角三角形,④错误,故答案为:②③13、-14【解题分析】根据题意,利用同角三角函数的基本关系,再由诱导公式,可得答案.【题目详解】∵角α与角β的终边关于坐标原点对称,所以β=α+由诱导公式可得:sinβ=-故答案为:-14、0【解题分析】令x=1代入即可求出结果.【题目详解】令,则.【题目点拨】本题主要考查求函数的值,属于基础题型.15、【解题分析】解不等式组即得解.【题目详解】解:由题得且,所以函数的定义域为.故答案为:16、①.1②.0【解题分析】根据函数的周期性和奇偶性,结合已知条件,代值计算即可.【题目详解】因为满足,且,且其为奇函数,故;又,故可得,又函数是定义在上的奇函数,故,又,故.故答案为:1;0.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2);(3).【解题分析】(1)由题知,,进而求解即可得答案;(2)由题知函数在上是增函数,故,进而解不等式即可得答案.(3)由题知,进而根据题意得方程在上至少含有10个零点,进而得,再解不等式即可得答案.【题目详解】解:(1)由题知,因为是周期为的偶函数,所以,,解得:,,所以,.(2)因为,所以,因为函数在上是增函数,所以函数在上是增函数,所以,解得,又因为,故.所以的最大值为.(3)当时,,所以,当时,,又因为函数在上至少含有10个零点,所以方程在上至少含有10个零点,所以,解得故b最小值为.【题目点拨】本题考查三角函数图像平移变换,正弦型函数的性质,考查运算求解能力,化归转化思想,是中档题.本题解题的关键件在于利用整体换元的思想,将为题转化为利用函数的图像性质求解.18、(1)20;(2)【解题分析】(1)利用指对数的运算化简(2)利用三角函数诱导公式,以及弦化切的运算【题目详解】(1)对原式进行计算如下:(2)对原式进行化简如下:将代入上式得:原式19、(1);(2).【解题分析】(1)根据所选的条件求得,,再由差角正弦公式求的值;(2)由题设可得,进而可得,结合及差角余弦公式,即可求值.【小问1详解】由,则:若选①,由,,得,,若选②,由得:,所以,若选③,由得,,,,所以.【小问2详解】∵,∴,又,∴∴.20、(1);(2)【解题分析】(1)根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒精检测仪行业直播电商战略研究报告
- 高纯金属有机化合物(MO源)行业直播电商战略研究报告
- 透水砖行业直播电商战略研究报告
- 钢铁制非铰接链行业直播电商战略研究报告
- 钢结构行业直播电商战略研究报告
- 2025-2030中国汽车节油器行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030中国汽车漆行业市场深度调研及发展趋势与投资前景预测研究报告
- 2025-2030中国汽车整车制造业未来创新策略及发展趋势洞悉研究报告
- 2025-2030中国汽车增压中冷器市场经营效率与未来营销策略分析研究报告
- 2025-2030中国水果白兰地行业市场发展趋势与前景展望战略研究报告
- 《母鸡》课件 王崧舟 千课万人 (图片版不可编辑)
- 国开电大《工程数学(本)》形成性考核作业5答案
- 13、试生产开停工方案
- 暖通工程设备吊装施工方案
- JJG 109-2004百分表式卡规
- GB/T 5597-1999固体电介质微波复介电常数的测试方法
- 新疆旅游景点大全课件
- 反有组织犯罪法学习PPT
- 新教材人教版高中物理选择性必修第一册全册教学课件
- DB32 3709-2019 防灾避难场所建设技术标准
- 先天性脊柱侧凸的诊疗和治疗讲义课件
评论
0/150
提交评论