湖北省公安县第三中学2024届高一上数学期末经典模拟试题含解析_第1页
湖北省公安县第三中学2024届高一上数学期末经典模拟试题含解析_第2页
湖北省公安县第三中学2024届高一上数学期末经典模拟试题含解析_第3页
湖北省公安县第三中学2024届高一上数学期末经典模拟试题含解析_第4页
湖北省公安县第三中学2024届高一上数学期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省公安县第三中学2024届高一上数学期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.△ABC的内角、、的对边分别为、、,若,,,则()A. B.C. D.2.若,则()A. B.C. D.3.定义域为R的偶函数满足对任意的,有=且当时,=,若函数=在(0,+上恰有六个零点,则实数的取值范围是A. B.C. D.4.已知函数,若,则函数的单调递减区间是A. B.C. D.5.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A. B.C. D.6.已知扇形的圆心角为,面积为8,则该扇形的周长为()A.12 B.10C. D.7.满足2,的集合A的个数是A.2 B.3C.4 D.88.已知函数且,则实数的范围()A. B.C. D.9.若,,,则()A. B.C. D.10.在中,若,且,则的形状为A.等边三角形 B.钝角三角形C.锐角三角形 D.等腰直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.命题“”的否定是__________12.已知=-5,那么tanα=________.13.函数的零点为_________________.14.下列命题中正确的是__________.(填上所有正确命题的序号)①若,,则;②若,,则;③若,,则;④若,,,,则15.不等式的解集为_____16.已知角的顶点为坐标原点,始边为x轴非负半轴,若是角终边上的一点,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)已知,求的值;(2)已知,,求的值.18.如图,在四棱锥中,,,,分别为棱,的中点,,,且.(1)证明:平面平面.(2)若四棱锥的高为3,求该四棱锥的体积.19.已知函数的部分图象如图所示.(1)求的解析式;(2)若,求的最值以及取得最值时相应的的值.20.函数是定义在上的奇函数,且(1)确定的解析式(2)判断在上的单调性,并利用函数单调性的定义证明;(3)解关于的不等式21.某种商品的市场需求量(万件)、市场供应量(万件)与市场价格(元/件)分别近似地满足下列关系:,.当时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量(1)求平衡价格和平衡需求量;(2)若该商品的市场销售量(万件)是市场需求量和市场供应量两者中的较小者,该商品的市场销售额(万元)等于市场销售量与市场价格的乘积①当市场价格取何值时,市场销售额取得最大值;②当市场销售额取得最大值时,为了使得此时市场价格恰好是新的市场平衡价格,则政府应该对每件商品征税多少元?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由已知利用余弦定理可求的值,利用等腰三角形的性质可求的值.【题目详解】解:∵,,,∴由余弦定理可得,求得:c=1.∴∴.故选:C.【题目点拨】本题主要考查了余弦定理在解三角形中应用,属于基础题.2、A【解题分析】应用辅助角公式将条件化为,再应用诱导公式求.【题目详解】由题设,,则,又.故选:A3、C【解题分析】因为=,且是定义域为R的偶函数,令,则,解得,所以有=,所以是周期为2的偶函数,因为当时,=,其图象为开口向下,顶点为(3,0)的抛物线,因为函数=在(0,+上恰有六个零点,令,因为所以,所以,要使函数=在(0,+上恰有六个零点,如图所示:只需要,解得.故选C.点睛:本题考查函数的零点及函数与方程,解答本题时要注意先根据函数给出的性质对称性和周期性,画出函数的图象,然后结合函数的零点个数即为函数和图象交点的个数,利用数形结合思想求得实数的取值范围.4、D【解题分析】由判断取值范围,再由复合函数单调性的原则求得函数的单调递减区间【题目详解】,所以,则为单调增函数,又因为在上单调递减,在上单调递增,所以的单调减区间为,选择D【题目点拨】复合函数的单调性判断遵循“同增异减”的原则,所以需先判断构成复合函数的两个函数的单调性,再判断原函数的单调性5、D【解题分析】根据三视图还原该几何体,然后可算出答案.【题目详解】由三视图可知该几何体是半径为1的球和底面半径为1,高为3的圆柱的组合体,故其表面积为球的表面积与圆柱的表面积之和,即故选:D6、A【解题分析】利用已知条件求出扇形的半径,即可得解周长【题目详解】解:设扇形的半径r,扇形OAB的圆心角为4弧度,弧长为:4r,其面积为8,可得4r×r=8,解得r=2扇形的周长:2+2+8=12故选:A7、C【解题分析】由条件,根据集合的子集的概念与运算,即可求解【题目详解】由题意,可得满足2,的集合A为:,,,2,,共4个故选C【题目点拨】本题主要考查了集合的定义,集合与集合的包含关系的应用,其中熟记集合的子集的概念,准确利用列举法求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题8、B【解题分析】根据解析式得,进而得令,得为奇函数,,进而结合函数单调性求解即可.【题目详解】函数,定义域为,满足,所以,令,所以,所以奇函数,,函数在均为增函数,所以在为增函数,所以在为增函数,因为为奇函数,所以在为增函数,所以,解得.故选:B.9、A【解题分析】先变形,然后利用指数函数的性质比较大小即可【题目详解】,因为在上为减函数,且,所以,所以,故选:A10、D【解题分析】由条件可得A为直角,结合,可得解.【题目详解】,=,又,为等腰直角三角形,故选D.【题目点拨】本题考查了向量数量积表示两个向量的垂直关系,考查了三角形的形状,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】特称命题的否定.【题目详解】命题“”的否定是【题目点拨】本题考查特称命题的否定,属于基础题;对于含有量词的命题的否定要注意两点:一是要改换量词,即把全称(特称)量词改为特称(全称)量词,二是注意要把命题进行否定.12、-【解题分析】由已知得=-5,化简即得解.【题目详解】易知cosα≠0,由=-5,得=-5,解得tanα=-.故答案为:-【题目点拨】本题主要考查同角的商数关系,意在考查学生对这些知识的理解掌握水平.13、.【解题分析】解方程即可.【题目详解】令,可得,所以函数的零点为.故答案为:.【题目点拨】本题主要考查求函数的零点,属基础题.14、③【解题分析】对于①,若,,则与可能异面、平行,故①错误;对于②,若,,则与可能平行、相交,故②错误;对于③,若,,则根据线面垂直的性质,可知,故③正确;对于④,根据面面平行的判定定理可知,还需添加相交,故④错误,故答案为③.【方法点晴】本题主要考查线面平行的判定与性质、面面平行的性质及线面垂直的性质,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.15、【解题分析】把不等式x2﹣2x>0化为x(x﹣2)>0,求出解集即可【题目详解】不等式x2﹣2x>0可化为x(x﹣2)>0,解得x<0或x>2;∴不等式的解集为{x|x<0或x>2}故答案为【题目点拨】本题考查了一元二次不等式的解法与应用问题,是基础题目16、【解题分析】根据余弦函数的定义可得答案.【题目详解】解:∵是角终边上的一点,∴故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)根据题意,构造齐次式求解即可;(2)根据,并结合求解即可.【题目详解】解:(1)因为所以,(2)因为,所以,因为,所以,所以所以所以18、(1)见解析(2)9【解题分析】(1)根据,可知,由可证明,又根据中位线可证明即可由平面与平面平行的判定定理证明平面平面.(2)利用勾股定理,求得.底面为直角梯形,求得底面积后即可由四棱锥的体积公式求得解.【题目详解】(1)证明:因为为的中点,且,所以.因为,所以,所以四边形为平行四边形,所以.在中,因为,分别为,的中点,所以,因为,,所以平面平面.(2)因为,所以,又,所以.所以四边形的面积为,故四棱锥的体积为.【题目点拨】本题考查了平面与平面平行的判定,四棱锥体积的求法,属于基础题.19、(1)(2)时,,时,【解题分析】(1)根据图像先确定,再根据周期确定,代入特殊点确定,即可得到函数解析式;(2)将作为一个整体,求出其取值范围,进而求得函数最值,以及相应的x的值.【小问1详解】由图知,,,即,得,所以,又,所以,,即,由得,所以.【小问2详解】由得,所以当,即时,,当,即时,.20、(1)(2)增函数,证明见解析(3)【解题分析】(1)根据奇偶性的定义与性质求解(2)由函数的单调性的定义证明(3)由函数奇偶性和单调性,转化不等式后再求解【小问1详解】根据题意,函数是定义在上的奇函数,则,解可得;又由,则有,解可得;则【小问2详解】由(1)的结论,,在区间上为增函数;证明:设,则又由,则,,,,则,即则函数在上为增函数.【小问3详解】由(1)(2)知为奇函数且在上为增函数.,解可得:,即不等式的解集为.21、(1)平衡价格是30元,平衡需求量是40万件.(2)①市场价格是35元时,市场总销售额取得最大值.②政府应该对每件商品征7.5元【解题分析】(1)令,得,可得,此时,从而可得结果;(2)①先求出,从而得,根据二次函数的性质分别求出两段函数的最值再比较大小即可的结果;②政府应该对每件商品征税元,则供应商的实际价格是每件元,根据可得结果.试题解析:(1)令,得,故,此时答:平衡价格是30元,平衡需求量是40万件(2)①由,,得,由题意可知:故当时,,即时,;当时,,即时,,综述:当时,时,答:市场价格是35元时,市场总销售额取得最大值②设政府应该对每件商品征税元,则供应商的实际价格是每件元,故,令,得,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论