浙江省杭师大附中2024届高一数学第一学期期末质量跟踪监视模拟试题含解析_第1页
浙江省杭师大附中2024届高一数学第一学期期末质量跟踪监视模拟试题含解析_第2页
浙江省杭师大附中2024届高一数学第一学期期末质量跟踪监视模拟试题含解析_第3页
浙江省杭师大附中2024届高一数学第一学期期末质量跟踪监视模拟试题含解析_第4页
浙江省杭师大附中2024届高一数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭师大附中2024届高一数学第一学期期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的值为A. B.C. D.2.下列命题不正确的是()A.若,则的最大值为1 B.若,则的最小值为4C.若,则的最小值为1 D.若,则3.已知函数恰有2个零点,则实数a取值范围是()A. B.C. D.4.已知原点到直线的距离为1,圆与直线相切,则满足条件的直线有A.1条 B.2条C.3条 D.4条5.设m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是A.若,,则B.若,,,则C.若,,则D.若,,,则6.已知偶函数在区间内单调递增,若,,,则的大小关系为()A. B.C. D.7.函数的零点所在的区间为A B.C. D.8.如图,向量,,的起点与终点均在正方形网格的格点上,若,则()A. B.C.2 D.49.函数的定义域是()A. B.C. D.10.将函数图象向左平移个单位后与的图象重合,则()A. B.C D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数是奇函数,则__________.12.已知函数,若有解,则m的取值范围是______13.已知函数同时满足以下条件:①定义域为;②值域为;③.试写出一个函数解析式___________.14.已知函数,若关于方程恰好有6个不相等的实数解,则实数的取值范围为__________.15.不等式的解集为_________________.16.已知直线过两直线和的交点,且原点到该直线的距离为,则该直线的方程为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线:与圆:交于,两点.(1)求的取值范围;(2)若,求.18.已知函数,,且.(1)求实数m的值,并求函数有3个不同的零点时实数b的取值范围;(2)若函数在区间上为增函数,求实数a的取值范围.19.中国茶文化博大精深,茶水的口感与茶叶类型和茶水的温度有关.经验表明,某种绿茶,用一定温度的水泡制,再等到茶水温度降至某一温度时,可以产生最佳口感.某研究员在泡制茶水的过程中,每隔1min测量一次茶水温度,收集到以下数据:时间/min012345水温/℃85.0079.0073.6068.7464.3660.42设茶水温度从85°C开始,经过tmin后温度为y℃,为了刻画茶水温度随时间变化的规律,现有以下两种函数模型供选择:①;②(1)选出你认为最符合实际的函数模型,说明理由,并参考表格中前3组数据,求出函数模型的解析式;(2)若茶水温度降至55℃时饮用,可以产生最佳口感,根据(1)中的函数模型,刚泡好的茶水大约需要放置多长时间才能达到最佳饮用口感?(参考数据:,)20.若向量的最大值为(1)求的值及图像的对称中心;(2)若不等式在上恒成立,求的取值范围21.已知函数(1)求不等式的解集;(2)将图像上所有点的横坐标缩短为原来的(纵坐标不变),再将所得图像向右平移个单位长度,得到函数的图像.求在区间上的值域

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据诱导公式将原式化简为,分子分母同除以,即可求出结果.【题目详解】因为,又,所以原式.故选B【题目点拨】本题主要考查诱导公式和同角三角函数基本关系,熟记公式即可,属于基础题型.2、D【解题分析】选项A、B、C通过给定范围求解对应的值域即可判断正误,选项D通过移向做差,化简合并,即可判断.【题目详解】对于A,若,则,即的最大值为1,故A正确;对于B,若,则,当且仅当,即时取等号,所以最小值为4,故B正确;对于C,若,则,即的最小值为1,故C正确;对于D,∵,,∴,故D不正确故选:D.3、D【解题分析】由在区间上单调递减,分类讨论,,三种情况,根据零点个数求出实数a的取值范围.【题目详解】函数在区间上单调递减,且方程的两根为.若时,由解得或,满足题意.若时,,,当时,,即函数在区间上只有一个零点,因为函数恰有2个零点,所以且.当时,,,此时函数有两个零点,满足题意.综上,故选:D4、C【解题分析】由已知,直线满足到原点的距离为,到点的距离为,满足条件的直线即为圆和圆的公切线,因为这两个圆有两条外公切线和一条内公切线.故选C.考点:相离两圆的公切线5、C【解题分析】根据空间中直线与平面,平面与平面的位置关系即得。【题目详解】A.因为垂直于同一平面的两个平面可能平行或相交,不能确定两平面之间是平行关系,故不正确;B.若,,,则或相交,故不正确;C.由垂直同一条直线的两个平面的关系判断,正确;D.若,,,则或相交,故不正确.故选:C【题目点拨】本题考查空间直线和平面,平面和平面的位置关系,考查学生的空间想象能力。6、D【解题分析】先利用偶函数的对称性判断函数在区间内单调递减,结合偶函数定义得,再判断,和的大小关系,根据单调性比较函数值的大小,即得结果.【题目详解】偶函数的图象关于y轴对称,由在区间内单调递增可知,在区间内单调递减.,故,而,,即,故,由单调性知,即.故选:D.7、B【解题分析】根据零点的存在性定理,依次判断四个选项的区间中是否存在零点【题目详解】,,,由零点的存在性定理,函数在区间内有零点,选择B【题目点拨】用零点的存在性定理只能判断函数有零点,若要判断有几个零点需结合函数的单调性判断8、D【解题分析】根据图象求得正确答案.【题目详解】由图象可知.故选:D9、D【解题分析】由函数解析式有意义可得出关于实数的不等式组,由此可求得原函数的定义域.【题目详解】函数有意义,只需且,解得且因此,函数的定义域为.故选:D.10、C【解题分析】利用三角函数的图象变换可求得函数的解析式.【题目详解】由已知可得.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据题意,得到,即可求解.【题目详解】因为是奇函数,可得.故答案为:.12、【解题分析】利用函数的值域,转化方程的实数解,列出不等式求解即可.【题目详解】函数,若有解,就是关于的方程在上有解;可得:或,解得:或可得.故答案为.【题目点拨】本题考查函数与方程的应用,考查转化思想有解计算能力.13、或(答案不唯一)【解题分析】由条件知,函数是定义在R上的偶函数且值域为,可以写出若干符合条件的函数.【题目详解】函数定义域为R,值域为且为偶函数,满足题意的函数解析式可以为:或【题目点拨】本题主要考查了函数的定义域、值域、奇偶性以,属于中档题.14、【解题分析】作出函数的简图,换元,结合函数图象可知原方程有6根可化为在区间上有两个不等的实根,列出不等式组求解即可.【题目详解】当,结合“双勾”函数性质可画出函数的简图,如下图,令,则由已知条件知,方程在区间上有两个不等的实根,则,即实数的取值范围为.故答案为:【题目点拨】本题主要考查了分段函数的图象,二次方程根的分布,换元法,数形结合,属于难题.15、或.【解题分析】利用一元二次不等式的求解方法进行求解.【题目详解】因为,所以,所以或,所以不等式的解集为或.故答案为:或.16、或【解题分析】先求两直线和的交点,再分类讨论,先分析所求直线斜率不存在时是否符合题意,再分析直线斜率存在时,设斜率为,再由原点到该直线的距离为,求出,得到答案.【题目详解】由和,得,即交点坐标为,(1)当所求直线斜率不存在时,直线方程为,此时原点到直线的距离为,符合题意;(2)当所求直线斜率存在时,设过该点的直线方程为,化为一般式得,由原点到直线的距离为,则,解得,得所求直线的方程为.综上可得,所求直线的方程为或故答案为:或【题目点拨】本题考查了求两直线的交点坐标,由点到直线的距离求参,还考查了对直线的斜率是否存在分类讨论的思想,属于中档题.三、三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或.【解题分析】(1)将圆的一般方程化为标准方程,根据两个交点,结合圆心到直线的距离即可求得的取值范围.(2)根据垂径定理及,结合点到直线距离公式,即可得关于的方程,解方程即可求得的值.【题目详解】(1)由已知可得圆的标准方程为,圆心,半径,则到的距离,解得,即的取值范围为.(2)因为,解得所以由圆心到直线距离公式可得.解得或.【题目点拨】本题考查了直线与圆的位置关系判断,直线与圆相交时的弦长关系及垂径定理应用,属于基础题.18、(1)..(2)【解题分析】(1)由求得,作出函数图象可知的范围;(2)由函数图象可知区间所属范围,列不等式示得结论.【题目详解】(1)因为,所以.函数大致图象如图所示令,得.故有3个不同的零点.即方程有3个不同的实根.由图可知.(2)由图象可知,函数在区间和上分别单调递增.因为,且函数在区间上为增函数,所以可得,解得.所以实数a的取值范围为.【题目点拨】本题考查由函数值求参数,考查分段函数的图象与性质.考查零点个数问题与转化思想.属于中档题.19、(1);(2)【解题分析】(1)根据表中数据可知,随着时间的变化,温度越来越低直至室温,所以选择模型①,再列出三个方程,解出,即可得到函数模型的解析式;(2)令,即可求解得出【小问1详解】由表中数据可知,随着时间的变化,温度越来越低直至室温,就不再下降,所以选择模型①:由前3组数据可得,解得,所以函数模型为【小问2详解】由题意可知,即,所以,所以刚泡好的茶水大约需要放置才能达到最佳饮用口感.20、(1)(2)【解题分析】(1)先利用向量的数量积公式和倍角公式对函数式进行化简,再利用两倍角公式以及两角差的正弦公式进行整理,然后根据最大值为解出的值,最后根据正弦函数的性质求得函数的对称中心;(2)首先通过的取值范围来确定函数的范围,再根据不等式在上恒成立,推断出,最后计算得出结果【题目详解】因为的最大值为,所以,由得所以的对称中心为;(2)因为,所以即,因为不等式在上恒成立,所以即解得,的取值范围为【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论