




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
株洲市重点中学2024届高一上数学期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,若,则()A. B.C.2 D.32.将函数图象向左平移个单位,所得函数图象的一条对称轴的方程是A. B.C. D.3.已知函数的单调区间是,那么函数在区间上()A.当时,有最小值无最大值 B.当时,无最小值有最大值C.当时,有最小值无最大值 D.当时,无最小值也无最大值4.已知集合,集合与的关系如图所示,则集合可能是()A. B.C. D.5.已知函数满足对任意实数,都有成立,则的取值范围是()A B.C. D.6.关于的不等式的解集为,且,则()A.3 B.C.2 D.7.在空间四边形的各边上的依次取点,若所在直线相交于点,则A.点必在直线上 B.点必在直线上C.点必在平面外 D.点必在平面内8.下列说法正确的有()①两个面平行且相似,其余各面都是梯形的多面体是棱台;②经过球面上不同的两点只能作一个大圆;③各侧面都是正方形的四棱柱一定是正方体;④圆锥的轴截面是等腰三角形.A.1个 B.2个C.3个 D.4个9.如图:在正方体中,设直线与平面所成角为,二面角的大小为,则为A. B.C. D.10.已知直线,若,则的值为()A.8 B.2C. D.-2二、填空题:本大题共6小题,每小题5分,共30分。11.已知为第四象限的角,,则________.12.若直线经过点,且与斜率为的直线垂直,则直线的方程为__________13.已知任何一个正实数都可以表示成,则的取值范围是________________;的位数是________________.(参考数据)14.已知点P(tanα,cosα)在第三象限,则角α的终边在第________象限15.已知命题“,”是真命题,则实数的取值范围为__________16.已知,则的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为(1)求的解析式;(2)当,求的值域18.已知的图象上相邻两对称轴的距离为.(1)若,求的递增区间;(2)若时,若的最大值与最小值之和为5,求的值.19.(1)从区间内任意选取一个实数,求事件“”发生的概率;(2)从区间内任意选取一个整数,求事件“”发生的概率.20.如图,已知是半径为圆心角为的扇形,是该扇形弧上的动点,是扇形的内接矩形,记为.(1)若的周长为,求的值;(2)求的最大值,并求此时的值.21.已知函数(x∈R,(m>0)是奇函数.(1)求m的值:(2)用定义法证明:f(x)是R上的增函数.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】先计算的坐标,再利用可得,即可求解.【题目详解】,因为,所以,解得:,故选:A2、C【解题分析】将函数图象向左平移个单位得到,令,当时得对称轴为考点:三角函数性质3、D【解题分析】依题意不等式的解集为(1,+∞),即可得到且,即,再根据二次函数的性质计算在区间(-1,2)上的单调性及取值范围,即可得到函数的最值情况【题目详解】因为函数的单调区间是,即不等式的解集为(1,+∞),所以且,即,所以,当时,在上满足,故此时为增函数,既无最大值也无最小值,由此A,B错误;当时,在上满足,此时为减函数,既无最大值也无最小值,故C错误,D正确,故选:D.4、D【解题分析】由图可得,由选项即可判断.【题目详解】解:由图可知:,,由选项可知:,故选:D.5、C【解题分析】易知函数在R上递增,由求解.【题目详解】因为函数满足对任意实数,都有成立,所以函数在R上递增,所以,解得,故选:C6、A【解题分析】根据一元二次不等式与解集之间的关系可得、,结合计算即可.【题目详解】由不等式的解集为,得,不等式对应的一元二次方程为,方程的解为,由韦达定理,得,,因为,所以,即,整理,得.故选:A7、B【解题分析】由题意连接EH、FG、BD,则P∈EH且P∈FG,再根据两直线分别在平面ABD和BCD内,根据公理3则点P一定在两个平面的交线BD上【题目详解】如图:连接EH、FG、BD,∵EH、FG所在直线相交于点P,∴P∈EH且P∈FG,∵EH⊂平面ABD,FG⊂平面BCD,∴P∈平面ABD,且P∈平面BCD,由∵平面ABD∩平面BCD=BD,∴P∈BD,故选B【题目点拨】本题考查公理3的应用,即根据此公理证明线共点或点共线问题,必须证明此点是两个平面的公共点,可有点在线上,而线在面上进行证明8、A【解题分析】根据棱台、球、正方体、圆锥的几何性质,分析判断,即可得答案.【题目详解】①中若两个底面平行且相似,其余各面都是梯形,并不能保证侧棱延长线会交于一点,所以①不正确;②中若球面上不同的两点恰为球的某条直径的两个端点,则过此两点的大圆有无数个,所以②不正确;③中底面不一定是正方形,所以③不正确;④中圆锥的母线长相等,所以轴截面是等腰三角形,所以④是正确的.故选:A9、B【解题分析】连结BC1,交B1C于O,连结A1O,∵在正方体ABCD﹣A1B1C1D1中,BC1⊥B1C,BC1⊥DC,∴BO⊥平面A1DCB1,∴∠BA1O是直线A1B与平面A1DCB1所成角θ1,∵BO=A1B,∴θ1=30°;∵BC⊥DC,B1C⊥DC,∴∠BCB1是二面角A1﹣DC﹣A的大小θ2,∵BB1=BC,且BB1⊥BC,∴θ2=45°故答案选:B10、D【解题分析】根据两条直线垂直,列方程求解即可.【题目详解】由题:直线相互垂直,所以,解得:.故选:D【题目点拨】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】给两边平方先求出,然后利用完全平方公式求出,再利用公式可得结果.【题目详解】∵,两边平方得:,∴,∴,∵为第四象限角,∴,,∴,∴.故答案为:【题目点拨】此题考查的是同角三角函数的关系和二倍角公式,属于基础题.12、【解题分析】与斜率为的直线垂直,故得到直线斜率为又因为直线经过点,由点斜式故写出直线方程,化简为一般式:故答案为.13、①.②.【解题分析】根据对数函数的单调性及对数运算、对数式指数式的转化即可求解.【题目详解】因为,所以,由,故知,共有31位.故答案为:;3114、二【解题分析】由点P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,从而得到α所在的象限【题目详解】因为点P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,则角α的终边在第二象限,故答案为二点评:本题考查第三象限内的点的坐标的符号,以及三角函数在各个象限内的符号15、【解题分析】此题实质上是二次不等式的恒成立问题,因为,函数的图象抛物线开口向上,所以只要判别式不大于0即可【题目详解】解:因为命题“,”是真命题,所以不等式在上恒成立由函数的图象是一条开口向上的抛物线可知,判别式即解得所以实数的取值范围是故答案为:【题目点拨】本题主要考查全称命题或存在性命题的真假及应用,解题要注意的范围,如果,一定要注意数形结合;还应注意条件改为假命题,有时考虑它的否定是真命题,求出的范围.本题是一道基础题16、2【解题分析】根据给定条件把正余弦的齐次式化成正切,再代入计算作答.【题目详解】因,则,所以的值为2.故答案为:2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)根据最低点M可求得A;由x轴上相邻的两个交点之间的距离可求得ω;进而把点M代入即可求得,把代入即可得到函数的解析式(2)根据x的范围进而可确定当的范围,根据正弦函数的单调性可求得函数的最大值和最小值.确定函数的值域【题目详解】(1)由最低点为得A=2由x轴上相邻的两个交点之间的距离为得,即,由点在图象上的,,即,故又,故;(2),当,即时,取得最大值2;当,即时,取得最小值,故的值域为.18、(1)增区间是[kπ-,kπ+],k∈Z(2)【解题分析】首先根据已知条件,求出周期,进而求出的值,确定出函数解析式,由正弦函数的递增区间,,即可求出的递增区间由确定出的函数解析式,根据的范围求出这个角的范围,利用正弦函数的图象与性质即可求出函数的最大值,即可得到的值解析:已知由,则T=π=,∴w=2∴(1)令-+2kπ≤2x+≤+2kπ则-+kπ≤x≤+kπ故f(x)的增区间是[kπ-,kπ+],k∈Z(2)当x∈[0,]时,≤2x+≤∴sin(2x+)∈[-,1]∴∴点睛:这是一道求三角函数递增区间以及利用函数在某区间的最大值求得参数的题目,主要考查了两角和的正弦函数公式,正弦函数的单调性,以及正弦函数的定义域和值域,解题的关键是熟练掌握正弦函数的性质,属于中档题19、(1);(2).【解题分析】(1)由,得,即,故由几何概型概率公式,可得从区间内任意选取一个实数,求事件“”发生的概率;(2)由,得,整数有个,在区间的整数有个,由古典概型概率公式可知得,从区间内任意选取一个整数事件“”发生的概率.试题解析:(1)因为,所以,即,故由几何概型可知,所求概率为.(2)因为,所以,则在区间内满足的整数为1,2,3,共3个,故由古典概型可知,所求概率为.20、(1);(2),.【解题分析】(1)根据周长即可求得,以及;将目标式进行转化即可求得;(2)用表示出,将其转化为关于的三角函数,求该三角函数的最大值即可求得结果.【题目详解】(1),,则若的周长为,则,,平方得,即,解得(舍)或.则.(2)中,,,在中,,,则因为,,当,即时,有最大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文创空间管理办法
- 2024年四川省长宁县普通外科学(副高)考试题含答案
- 建设批后管理办法
- 林权评估管理办法
- 建立队籍管理办法
- 律所收费管理办法
- 律师登记管理办法
- 2024年陕西省大荔县普通外科学(副高)考试题含答案
- 林业苗木管理办法
- 征信认证管理办法
- 专业技术人员中医理疗师合同样本(2025年)
- 2024新人教版英语七下单词默写表(开学版)
- 骨科常用支具的使用及护理
- 项目部开工启动会议发言稿
- 幼儿园教师事业编招聘考试真题及答案(共15套)
- 机械制造厂生产管理规章制度
- 2025年湖南长沙城发集团招聘笔试参考题库含答案解析
- 2025中国华电集团限公司校招+社招高频重点提升(共500题)附带答案详解
- 心肺复苏术-cpr课件
- 2024上半年系统集成项目管理工程师真题及答案
- UL2034标准中文版-2017一氧化碳报警器UL中文版标准
评论
0/150
提交评论