版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届东北四市一模试题高一上数学期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是A.①和② B.②和③C.③和④ D.②和④2.如图,在下列四个正方体中,、为正方体两个顶点,、、为所在棱的中点,则在这四个正方体中,直线与平面不平行的是()A. B.C. D.3.在区间上任取一个数,则函数在上的最大值是3的概率为()A. B.C. D.4.下列函数中,既是偶函数,又在区间上单调递增的是()A. B.C. D.5.已知点,,,则的面积为()A.5 B.6C.7 D.86.设,则()A. B.aC. D.7.设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>aC.a>c>b D.a>b>c8.函数的图象如图所示,则()A. B.C. D.9.若,,则sin=A. B.C. D.10.为了得到函数的图像,只需把函数的图像上()A.各点的横坐标缩短到原来的倍,再向左平移个单位B.各点的横坐标缩短到原来的倍,再向左平移个单位C.各点的横坐标缩短到原来的2倍,再向左平移个单位D.各点的横坐标缩短到原来的2倍,再向左平移个单位二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,若实数满足,且,则的取值范围是_______________________12.已知角α∈(-,0),cosα=,则tanα=________.13.已知函数(且),若对,,都有.则实数a的取值范围是___________14.______.15.已知定义在上的奇函数满足,且当时,,则__________.16.已知,若是的充分不必要条件,则的取值范围为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数,.(1)若方程在区间上有解,求a的取值范围.(2)设,若对任意的,都有,求a的取值范围.18.函数的定义域,且满足对于任意,有(1)求的值(2)判断的奇偶性,并证明(3)如果,且在上是增函数,求的取值范围19.已知函数f(x)=2asin+b的定义域为,函数最大值为1,最小值为-5,求a和b的值20.已知,(1)若,求(2)若,求实数的取值范围.21.已知函数f(x)=a-.(1)若2f(1)=f(2),求a的值;(2)判断f(x)在(-∞,0)上的单调性并用定义证明.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择.【题目详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选D【题目点拨】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.2、D【解题分析】利用线面平行判定定理可判断A、B、C选项的正误;利用线面平行的性质定理可判断D选项的正误.【题目详解】对于A选项,如下图所示,连接,在正方体中,且,所以,四边形为平行四边形,则,、分别为、的中点,则,,平面,平面,平面;对于B选项,连接,如下图所示:在正方体中,且,所以,四边形为平行四边形,则,、分别为、的中点,则,,平面,平面,平面;对于C选项,连接,如下图所示:在正方体中,且,所以,四边形为平行四边形,则,、分别为、中点,则,,平面,平面,平面;对于D选项,如下图所示,连接交于点,连接,连接交于点,若平面,平面,平面平面,则,则,由于四边形为正方形,对角线交于点,则为的中点,、分别为、的中点,则,且,则,,则,又,则,所以,与平面不平行;故选:D.【题目点拨】判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(,,),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(,).3、A【解题分析】设函数,求出时的取值范围,再根据讨论的取值范围,判断是否能取得最大值,从而求出对应的概率值【题目详解】在区间上任取一个数,基本事件空间对应区间的长度是,由,得,∴,∴的最大值是或,即最大值是或;令,得,解得;又,∴;∴当时,,∴在上的最大值是,满足题意;当时,,∴函数在上的最大值是,由,得,的最大值不是;4、D【解题分析】根据题意,依次判断选项中函数的奇偶性、单调性,从而得到正确选项.【题目详解】根据题意,依次判断选项:对于A,,是非奇非偶函数,不符合题意;对于B,,是余弦函数,是偶函数,在区间上不是单调函数,不符合题意;对于C,,是奇函数,不是偶函数,不符合题意;对于D,,是二次函数,其开口向下对称轴为y轴,既是偶函数又在上单调递增,故选:D.5、A【解题分析】设AB边上的高为h,则S△ABC=|AB|·h,根据两点的距离公式求得|AB|,而AB边上的高h就是点C到直线AB的距离,由点到直线的距离公式可求得选项【题目详解】设AB边上的高为h,则S△ABC=|AB|·h,而|AB|=,AB边上的高h就是点C到直线AB的距离AB边所在的直线方程为,即x+y-4=0.点C到直线x+y-4=0的距离为,因此,S△ABC=×2×=5.故选:A6、C【解题分析】由求出的值,再由诱导公式可求出答案【题目详解】因为,所以,所以,故选:C7、D【解题分析】,,;且;.考点:对数函数的单调性.8、C【解题分析】根据正弦型函数图象与性质,即可求解.【题目详解】由图可知:,所以,故,又,可求得,,由可得故选:C.9、B【解题分析】因为,,所以sin==,故选B考点:本题主要考查三角函数倍半公式的应用点评:简单题,注意角的范围10、B【解题分析】各点的横坐标缩短到原来的倍,变为,再向左平移个单位,得到.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】结合图象确定a,b,c的关系,由此可得,再利用基本不等式求其最值.【题目详解】解:因为函数,若实数a,b,c满足,且,;如图:,且;令;因为;,当且仅当时取等号;,;故答案为:12、【解题分析】利用同角三角函数的平方关系和商数关系,即得解【题目详解】∵α∈(-,0),cosα=,∴sinα=-=-,∴tanα==-.故答案为:13、【解题分析】由条件可知函数是增函数,可得分段函数两段都是增函数,且时,满足,由不等式组求解即可.【题目详解】因为对,且都有成立,所以函数在上单调递增.所以,解得.故答案为:14、【解题分析】首先利用乘法将五进制化为十进制,再利用“倒序取余法”将十进制化为二进制即可.【题目详解】,根据十进制化为二进制“倒序取余法”如下:可得.故答案为:【题目点拨】本题考查了进位制的转化,在求解过程中,一般都是先把其它进制转化为十进制,再用倒序取余法转化为其它进制,属于基础题.15、##【解题分析】先求得是周期为的周期函数,然后结合周期性、奇偶性求得.【题目详解】因为函数为上的奇函数,所以,故,函数是周期为4的周期函数.当时,,则.故答案为:16、【解题分析】根据不等式的解法求出的等价条件,结合充分不必要条件的定义建立不等式关系即可【题目详解】由得得或,由得或,得或,若是的充分不必要条件,则即得,又,则,即实数的取值范围是,故填:【题目点拨】本题主要考查充分条件和必要条件的应用,求出不等式的等价条件结合充分条件和必要条件的定义进行转化是解决本题的关键,为基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1),有解,即在上有解,设,对称轴为,只需,解不等式,即可得出结论;(2)根据题意只需,分类讨论去绝对值求出,利用函数单调性求出或取值范围,转化为求关于的不等式,即可求解.【题目详解】(1)在区间上有解,整理得在区间上有解,设,对称轴为,,解得,所以a的取值范围.是;(2)当,;当,,,设是减函数,且在恒成立,在上是减函数,在处有意义,,对任意的,都有,即,解得,的取值范围是.【题目点拨】本题考查方程零点的分布求参数范围,考查对数函数的图像和性质的综合应用,要注意对数函数的定义域,函数恒成立问题,属于较难题.18、(1)0;(2)偶函数;(3)见解析【解题分析】(1)令,代入,即可求出结果;(2)先求出,再由,即可判断出结果;(3)先由,求出,将不等式化为,根据函数在上是增函数,分和两种情况讨论,即可得出结果.【题目详解】(1)因为对于任意,有,令,则,所以;(2)令,则,所以,令,则,所以函数为偶函数;(3)因为,所以,所以不等式可化为;又因为在上是增函数,而函数为偶函数,所以或;当时,或;当时,或;综上,当时,的取值范围为或;当时,的取值范围为或.【题目点拨】本题主要考查函数奇偶性与单调性的综合,以及抽象函数及其应用,常用赋值法求函数值,属于常考题型.19、a=12-6,b=-23+12,或a=-12+6,b=19-12.【解题分析】∵0≤x≤,∴-≤2x-≤.∴-≤sin≤1.若a>0,则,解得,若a<0,则,解得,综上可知,a=12-6,b=-23+12,或a=-12+6,b=19-12.20、(1);(2)【解题分析】(1)先化简集合A和集合B,再求.(2)由A得再因为得到,即得.【题目详解】(1)当时,有得,由知得或,故.(2)由知得,因为,所以,得.【题目点拨】本题主要考查集合的化简运算,考查集合中的参数问题,考查绝对值不等式和对数不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.21、(1)3(2)f(x)在(-∞,0)上是单调递增的,证明见解析【解题分析】(1)由已
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临沂职业学院《篆刻2》2023-2024学年第一学期期末试卷
- 江西应用工程职业学院《建筑设备自动化系统》2023-2024学年第一学期期末试卷
- 湖北开放职业学院《城市设计B》2023-2024学年第一学期期末试卷
- 遵义职业技术学院《中国古代文学5》2023-2024学年第一学期期末试卷
- 株洲师范高等专科学校《非遗影像策划与制作》2023-2024学年第一学期期末试卷
- 重庆青年职业技术学院《数据结构及算法》2023-2024学年第一学期期末试卷
- 株洲师范高等专科学校《重点传染病防治知识规培》2023-2024学年第一学期期末试卷
- 浙江外国语学院《课程与教学基础》2023-2024学年第一学期期末试卷
- 浙江工贸职业技术学院《建筑美术Ⅲ》2023-2024学年第一学期期末试卷
- 中南林业科技大学《物理化学(1)》2023-2024学年第一学期期末试卷
- 浅析商务英语中模糊语言的语用功能
- 老年人能力评估标准解读讲义课件
- 材料报价三家对比表
- 2024年国家公务员考试公共基础知识全真模拟试题及答案(共四套)
- 标准辅助航空摄影技术规范
- 2023年中国人保财险校园招聘笔试参考题库附带答案详解
- hdx7底层黑砖刷写和字库救砖教程bysmartyou
- 年会颁奖晚会颁奖盛典简约PPT模板
- 年产10000吨柑橘饮料的工厂设计
- 雷电知识、雷电灾害防御知识汇总-上(单选题库)
- 导学案 高中英语人教版必修三Unit4 Astronomy the science of the stars
评论
0/150
提交评论