版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省青岛市青岛第二中学高一上数学期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知六边形是边长为1的正六边形,则的值为A. B.C. D.2.若,则下列关系式一定成立的是()A. B.C. D.3.函数的部分图象如图所示,将其向右平移个单位长度后得到的函数解析式为()A. B.C. D.4.如果直线l,m与平面满足和,那么必有()A.且 B.且C.且 D.且5.要得到函数y=cos的图象,只需将函数y=cos2的图象()A.向左平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向右平移个单位长度6.已知直线,若,则的值为()A.8 B.2C. D.-27.如图,PO是三棱锥P-ABC底面ABC的垂线,垂足为O①若PA⊥BC,PB⊥AC,则点O是△ABC的垂心;②若PA=PB=PC,则点O是△ABC的外心;③若∠PAB=∠PAC,∠PBA=∠PBC,则点O是△ABC的内心;④过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则点O是△ABC的重心以上推断正确的个数是()A.1 B.2C.3 D.48.若函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|)的部分图象如图所示,将函数f(x)的图象向左平移1个单位长度后,得到函数g(x)的图象,则g(x)=()A.2cosx B.2sinxC.2cosx D.2sinx9.函数(,且)的图象恒过定点,且点在角的终边上,则()A. B.C. D.10.已知,则“”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.使三角式成立的的取值范围为_________12.设为向量的夹角,且,,则的取值范围是_____.13.已知扇形的圆心角为,半径为,则扇形的面积为______14.若,,,则的最小值为___________.15.如图,在平面直角坐标系中,矩形的顶点、分别在轴非负半轴和轴的非负半轴上滑动,顶点在第一象限内,,,设.若,则点的坐标为______;若,则的取值范围为______.16.正实数a,b,c满足a+2-a=2,b+3b=3,c+=4,则实数a,b,c之间的大小关系为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.女排世界杯比赛采用局胜制,前局比赛采用分制,每个队只有赢得至少分,并同时超过对方分时,才胜局;在决胜局(第五局)采用分制,每个队只有赢得至少分,并领先对方分为胜.在每局比赛中,发球方赢得此球后可得分,并获得下一球的发球权,否则交换发球权,并且对方得分.现有甲乙两队进行排球比赛.(1)若前三局比赛中甲已经赢两局,乙赢一局.接下来的每局比赛甲队获胜的概率为,求甲队最后赢得整场比赛的概率;(2)若前四局比赛中甲、乙两队已经各赢两局比赛.在决胜局(第五局)中,两队当前的得分为甲、乙各分,且甲已获得下一发球权.若甲发球时甲赢分的概率为,乙发球时甲赢分的概率为,得分者获得下一个球的发球权.求甲队在个球以内(含个球)赢得整场比赛的概率.18.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P()(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值19.已知圆的方程为:(1)求圆的圆心所在直线方程一般式;(2)若直线被圆截得弦长为,试求实数的值;(3)已知定点,且点是圆上两动点,当可取得最大值为时,求满足条件的实数的值20.已知是方程的两根,且,求的值21.已知向量,.(1)若与共线且方向相反,求向量的坐标.(2)若与垂直,求向量,夹角的大小.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】如图,,选D.2、A【解题分析】判断函数的奇偶性以及单调性,由此可判断函数值的大小,即得答案.【题目详解】由可知:,为偶函数,又,知在上单调递减,在上单调递增,故,故选:A.3、C【解题分析】由函数图象求出、、和的值,写出的解析式,再根据图象平移得出函数解析式【题目详解】由函数图象知,,,解得,所以,所以函数;因为,所以,;解得,;又,所以;所以;将函数的图象向右平移个单位长度后,得的图象,即故选:4、A【解题分析】根据题设线面关系,结合平面的基本性质判断线线、线面、面面的位置关系.【题目详解】由,则;由,则;由上条件,m与可能平行、相交,与有可能平行、相交.综上,A正确;B,C错误,m与有可能相交;D错误,与有可能相交故选:A5、B【解题分析】直接利用三角函数的平移变换求解.【题目详解】因函数y=cos,所以要得到函数y=cos的图象,只需将函数y=cos2的图象向左平移个单位长度,故选:B【题目点拨】本题主要考查三角函数的图象的平移变换,属于基础题.6、D【解题分析】根据两条直线垂直,列方程求解即可.【题目详解】由题:直线相互垂直,所以,解得:.故选:D【题目点拨】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.7、C【解题分析】①由题意得出AO⊥BC,BO⊥BC,点O是△ABC的垂心;②若PA=PB=PC,则AO=BO=CO,点O是△ABC的外心;③由题意得出AO是∠BAC的平分线,BO是∠ABC的平分线,O是△ABC的内心;④若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心【题目详解】对于①,PO⊥底面ABC,∴PO⊥BC,又PA⊥BC,∴BC⊥平面PAO,∴AO⊥BC;同理PB⊥AC,得出BO⊥BC,∴点O是△ABC的垂心,①正确;对于②,若PA=PB=PC,由此推出Rt△PAO≌Rt△PBO≌Rt△PCO,∴AO=BO=CO,点O是△ABC的外心,②正确;对于③,若∠PAB=∠PAC,且PO⊥底面ABC,则AO是∠BAC的平分线,同理∠PBA=∠PBC时BO是∠ABC平分线,∴点O是△ABC的内心,③正确;对于④,过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心,④错误综上,正确的命题个数是3故选C【题目点拨】本题主要考查了空间中的直线与平面的垂直关系应用问题,是中档题8、A【解题分析】观察函数图像,求得,再结合函数图像的平移变换即可得解.详解】解:由图可知,,即,又,所以,即,又由图可知,所以,又,即即,将函数f(x)的图象向左平移1个单位长度后,得到函数g(x)的图象,则,故选:A.【题目点拨】本题考查了利用函数图像求解析式,重点考查了函数图像的平移变换,属基础题.9、D【解题分析】根据对数型函数恒过定点得到定点,再根据点在角的终边上,由三角函数的定义得,即可得到答案.【题目详解】由于函数(,且)的图象恒过定点,则,点,点在角的终边上,.故选:D.10、A【解题分析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果【题目详解】a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件故选A【题目点拨】充分、必要条件的三种判断方法
定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件
等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法
集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据同角三角函数间的基本关系,化为正余弦函数,即可求出.【题目详解】因为,,所以,所以,所以终边在第三象限,.【题目点拨】本题主要考查了同角三角函数间的基本关系,三角函数在各象限的符号,属于中档题.12、【解题分析】将平方可得cosθ,利用对勾函数性质可得最小值,从而得解.【题目详解】两个不共线的向量,的夹角为θ,且,可得:,可得cosθ那么cosθ的取值范围:故答案为【题目点拨】本题考查向量的数量积的应用,向量夹角的求法,考查计算能力,属于中档题.13、【解题分析】∵扇形的圆心角为,半径为,∴扇形的面积故答案为14、3【解题分析】利用基本不等式常值代换即可求解.【题目详解】因为,,,所以,当且仅当,即时,等号成立,所以的最小值为3,故答案为:315、①.②.【解题分析】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,设点、,根据锐角三角函数的定义可得出点、的坐标,然后利用平面向量数量积的坐标运算和二倍角的正弦公式可求出的取值范围.【题目详解】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,如下图所示:则,设点、,则,,,.当时,,,则点;由上可知,,,则,因此,的取值范围是.故答案为:;.【题目点拨】本题考查点的坐标的计算,同时也考查了平面向量数量积的取值范围的求解,解题的关键就是将点的坐标利用三角函数表示,考查运算求解能力,属于中等题.16、##【解题分析】利用指数的性质及已知条件求a、b的范围,讨论c的取值范围,结合对数的性质求c的范围【题目详解】由,由,又,当时,,显然不成立;当时,,不成立;当时,;综上,.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)先确定甲队最后赢得整场比赛的情况,再分别根据独立事件概率乘法公式求解,最后根据互斥事件概率加法公式得结果;(2)先根据比赛规则确定x的取值,再确定甲赢得整场比赛的情况,最后根据独立事件概率乘法公式以及互斥事件概率加法公式得结果.【题目详解】(1)甲队最后赢得整场比赛的情况为第四局赢或第四局输第五局赢,所以甲队最后赢得整场比赛的概率为,(2)设甲队x个球后赢得比赛,根据比赛规则,x的取值只能为2或4,对应比分为两队打了2个球后甲赢得整场比赛,即打第一个球甲发球甲得分,打第二个球甲发球甲得分,此时概率为;两队打了4个球后甲赢得整场比赛,即打第一个球甲发球甲得分,打第二个球甲发球甲失分,打第三个球乙发球甲得分,打第四个球甲发球甲得分,或打第一个球甲发球甲失分,打第二个球乙发球甲得分,打第三个球甲发球甲得分,打第四个球甲发球甲得分,此时概率为.故所求概率为:18、(Ⅰ);(Ⅱ)或.【解题分析】分析:(Ⅰ)先根据三角函数定义得,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得,再根据同角三角函数关系得,最后根据,利用两角差的余弦公式求结果.【题目详解】详解:(Ⅰ)由角的终边过点得,所以.(Ⅱ)由角的终边过点得,由得.由得,所以或.点睛:三角函数求值的两种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.19、(1);(2)或;(3).【解题分析】(1)配方得圆的标准方程,可得圆心坐标满足,消去可得圆心所在直线方程;(2)由弦长、半径结合勾股定理求出圆心到直线的距离,再由点到直线距离公式求得圆心到直线的距离,两者相等可解得m;(3)根据题意判断出四边形PACB是正方形,进而求得,由两点间距离公式可求得m【小问1详解】由已知圆C的方程为:,所以圆心为,所以圆心在直线方程为.【小问2详解】(2)由已知r=2,又弦长为,所以圆心到直线距离,所以,解得或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国石油大学(北京)《篮球》2023-2024学年第一学期期末试卷
- 郑州升达经贸管理学院《园林景观快题设计》2023-2024学年第一学期期末试卷
- 小学新课程标准培训方案
- 长春工业大学《葡萄酒品尝学》2023-2024学年第一学期期末试卷
- 生态恢复技术在退化土地上应用
- 餐饮业年度报告模板
- AI生活助手新品发布模板
- 硕士论文答辩报告
- 生医年报展望模板
- 房地产交易制度政策-《房地产基本制度与政策》全真模拟试卷4
- 化学-贵州省三市(贵阳、六盘水、铜仁)2024年高三年级适应性考试(二) 试题和答案
- 校服服务方案投标方案
- 中建幕墙工程管理指南
- 《2024-2030年中国文创产品行业竞争格局分析及投资发展研究报告》
- T-CAME 59-2023 医院消毒供应中心建设与运行管理标准
- 电化学储能电站安全规程
- 2024年4月自考00612日本文学选读试题
- 无人机驾驶培训班合作协议
- 制度-诉讼文书立卷归档管理办法
- 幕墙工程施工的重点难点分析及针对措施
- 2023年浙江省绍兴市中考科学真题(解析版)
评论
0/150
提交评论