版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市顺义一中2024届高一上数学期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,下列说法错误的是()A.函数在上单调递减B.函数是最小正周期为的周期函数C.若,则方程在区间内,最多有4个不同的根D.函数在区间内,共有6个零点2.的零点所在区间为()A. B.C. D.3.若,且,则的值是A. B.C. D.4.已知函数的零点,(),则()A. B.C. D.5.已知函数是定义域上的递减函数,则实数a的取值范围是()A. B.C. D.6.A. B.C.1 D.7.对于函数的图象,关于直线对称;关于点对称;可看作是把的图象向左平移个单位而得到;可看作是把的图象上所有点的纵坐标不变,横坐标缩短到原来的倍而得到以上叙述正确的个数是A.1个 B.2个C.3个 D.4个8.计算(16A.-1 B.1C.-3 D.39.已知函数,若方程有五个不同的实数根,则实数的取值范围为()A. B.C. D.10.斜率为4的直线经过点A(3,5),B(a,7),C(-1,b)三点,则a,b的值为()A.a=,b=0 B.a=-,b=-11C.a=,b=-11 D.a=-,b=11二、填空题:本大题共6小题,每小题5分,共30分。11.若命题“,”为假命题,则实数的取值范围为______.12.已知函数的图象上关于轴对称的点恰有9对,则实数的取值范围_________.13.函数的单调减区间是_________.14.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是__________15.已知定义在上的奇函数,当时,,当时,________16.已知正三棱柱的棱长均为2,则其外接球体积为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知平面上点,且.(1)求;(2)若点,用基底表示.18.已知定义域为的函数是奇函数.(1)求实数的值;(2)判断并用定义证明该函数在定义域上的单调性;(3)若方程在内有解,求实数的取值范围19.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若,则=___________.20.如图,某地一天从5~13时的温度变化近似满足(1)求这一天5~13时的最大温差;(2)写出这段曲线的函数解析式21.如图,在三棱锥中,底面,,,分别是,的中点.(1)求证:平面;(2)求证:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】A.由时,判断;B.易知是偶函数,作出其图象判断;C.在同一坐标系中作出的图象判断;D.根据函数是偶函数,利用其图象,判断的零点个数即可.【题目详解】A.当时,,而,上递减,故正确;B.因为,所以是偶函数,当时,,作出其图象如图所示:由图象知;函数不是周期函数,故错误;C.在同一坐标系中作出的图象,如图所示:由图象知:当,方程在区间内,最多有4个不同的根,故正确;D.因为函数是偶函数,只求的零点个数即可,如图所示:由函数图象知,在区间内共有3个,所以函数在区间内,共有6个零点,故正确;故选:B2、C【解题分析】根据零点存在性定理进行判断即可【题目详解】,,,,根据零点存在性定理可得,则的零点所在区间为故选C【题目点拨】本题考查零点存性定理,属于基础题3、A【解题分析】由,则,考点:同角间基本关系式4、D【解题分析】将函数化为,根据二次函数的性质函数的单调性,利用零点的存在性定理求出两个零点的分布,进而得出零点的取值范围,依次判断选项即可.【题目详解】由题意知,,则函数图象的对称轴为,所以函数在上单调递增,在上单调递减,又,,,,所以,因为,,所以,所以,故A错误;,故B错误;,故C错误;,故D正确.故选:D5、B【解题分析】由指数函数的单调性知,即二次函数是开口向下的,利用二次函数的对称轴与1比较,再利用分段函数的单调性,可以构造一个关于a的不等式,解不等式即可得到实数a的取值范围【题目详解】函数是定义域上的递减函数,当时,为减函数,故;当时,为减函数,由,得,开口向下,对称轴为,即,解得;当时,由分段函数单调性知,,解得;综上三个条件都满足,实数a的取值范围是故选:B.【题目点拨】易错点睛:本题考查分段函数单调性,函数单调性的性质,其中解答时易忽略函数在整个定义域上为减函数,则在分界点处()时,前一段的函数值不小于后一段的函数值,考查学生的分析能力与运算能力,属于中档题.6、A【解题分析】由题意可得:本题选择A选项.7、B【解题分析】由判断;由判断;由的图象向左平移个单位,得到的图象判断;由的图象上所有点的纵坐标不变,横坐标缩短到原来的倍,得到函数的图象判断.【题目详解】对于函数的图象,令,求得,不是最值,故不正确;令,求得,可得的图象关于点对称,故正确;把的图象向左平移个单位,得到的图象,故不正确;把的图象上所有点的纵坐标不变,横坐标缩短到原来的倍,得到函数的图象,故正确,故选B【题目点拨】本题通过对多个命题真假的判断,综合考查三角函数的对称性以及三角函数的图象的变换规律,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.8、B【解题分析】原式=故选B9、A【解题分析】由可得或,数形结合可方程只有解,则直线与曲线有个交点,结合图象可得出实数的取值范围.【题目详解】由可得或,当时,;当时,.作出函数、、图象如下图所示:由图可知,直线与曲线有个交点,即方程只有解,所以,方程有解,即直线与曲线有个交点,则.故选:A.10、C【解题分析】因为,所以,则,故选C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】命题为假命题时,二次方程无实数解,据此可求a的范围.【题目详解】若命题“,”为假命题,则一元二次方程无实数解,∴.∴a的取值范围是:.故答案为:.12、【解题分析】求出函数关于轴对称的图像,利用数形结合可得到结论.【题目详解】若,则,,设为关于轴对称的图像,画出的图像,要使图像上有至少9个点关于轴对称,即与有至少9个交点,则,且满足,即则,解得,故答案为【题目点拨】解分段函数或两个函数对称性的题目时,可先将一个函数的对称图像求出,利用数形结合的方式得出参数的取值范围;遇到题目中指对函数时,需要讨论底数的范围,分别画出图像进行讨论.13、##【解题分析】根据复合函数的单调性“同增异减”,即可求解.【题目详解】令,根据复合函数单调性可知,内层函数在上单调递减,在上单调递增,外层函数在定义域上单调递增,所以函数#在上单调递减,在上单调递增.故答案为:.14、【解题分析】利用函数的图象变换规律,先放缩变换,再平移变换,从而可得答案【题目详解】将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得函数的图象;再将的图象向左平移个单位,得到的图象对应的解析式是的图象,故答案为:15、【解题分析】设,则,代入解析式得;再由定义在上的奇函数,即可求得答案.【题目详解】不妨设,则,所以,又因为定义在上的奇函数,所以,所以,即.故答案为:.16、【解题分析】分别是上,下底面的中心,则的中点为几何体的外接球的球心,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)设,根据向量相等的坐标表示可得答案;(2)设,建立方程,解之可得答案【题目详解】解:(1)设,由点,所以,又,所以,解得所以点,所以;(2)若点,所以,,设,即,解得所以用基底表示18、(1)1;(2)见解析;(3)[-1,3).【解题分析】(1)根据解得,再利用奇偶性的定义验证,即可求得实数的值;(2)先对分离常数后,判断出为递减函数,再利用单调性的定义作差证明即可;(3)先用函数的奇函数性质,再用减函数性质变形,然后分离参数可得,在内有解,令,只要.【题目详解】(1)依题意得,,故,此时,对任意均有,所以是奇函数,所以.(2)在上减函数,证明如下:任取,则所以该函数在定义域上是减函数(3)由函数为奇函数知,,又函数单调递减函数,从而,即方程在内有解,令,只要,,且,∴∴当时,原方程在内有解【题目点拨】本题主要考查函数的奇偶性与单调性以及函数值域的应用,属于难题.已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.19、【解题分析】因为和关于轴对称,所以,那么,(或),所以.【考点】同角三角函数,诱导公式,两角差余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若与的终边关于轴对称,则,若与的终边关于轴对称,则,若与的终边关于原点对称,则.20、(1)6摄氏度(2),【解题分析】(1)根据图形即可得出答案;(2)根据可得函数的最值,从而求得,图像为函数的半个周期,可求得,再利用待定系数法可求得,即可得解.【小问1详解】解:由图知,这段时间的最大温差是摄氏度;【小问2详解】解:由图可以看出,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村商业生态系统构建与优化策略
- 创新产品设计思维与市场接受度研究
- 护师(初级)复习题含答案解析
- 创新创业实践从理论到应用的跨越
- 农产品包装设计的品牌价值塑造与传播
- 电化学原理练习题及答案
- 互评机制在学生间知识共享中的应用
- 从要我学到我要学家长如何引导孩子转变学习态度
- 农业与环保协同发展的路径选择
- 创新教育模式推动素质教育的核心力量
- 物业公司经营规划
- 2024年心脑血管药物项目营销策划方案
- 搅拌站规划设计方案
- 医共体医疗质量控制中心工作职责(终版改)
- 四川省绵阳市2023年九年级上学期期末化学试题附答案
- 《金融学》课程期末考试复习题库(含答案)
- 少数民族傈僳族民俗文化科普介绍图文课件
- 英语谜语100个及答案简单
- 塑料表面处理工艺
- 幼儿园中班下学期语言绘本-土土的鞋子
- 23J916-1:住宅排气道(一)
评论
0/150
提交评论