版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省无锡市第一女子中学高一数学第一学期期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知全集,集合,集合,则集合A. B.C. D.2.下列函数中与函数是同一个函数的是()A. B.C. D.3.如图,正方形中,为的中点,若,则的值为()A. B.C. D.4.已知偶函数的定义域为且,,则函数的零点个数为()A. B.C. D.5.化简的值是A. B.C. D.6.设函数,若对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1﹣x2|的最小值是()A.4π B.2πC.π D.7.已知设alog30.2,b30.2,c0.23,则a,b,c的大小关系是()A.abc B.acbC.bac D.bca8.已知cosα=,cos(α+β)=-,且α,β∈,则cos(α-β)的值等于A.- B.C.- D.9.函数fxA.0 B.1C.2 D.310.函数f(x)=log3x-8+2x的零点一定位于区间A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,正实数,满足,且,若在区间上的最大值为2,则________.12.求值:______.13.函数的定义域为_________14.的解集为_____________________________________15.定义为中的最大值,函数的最小值为,如果函数在上单调递减,则实数的范围为__________16.写出一个同时满足以下条件的函数___________;①是周期函数;②最大值为3,最小值为;③在上单调三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.计算下列式子的值:(1);(2).18.求下列各式的值(1)(2)(3)(4)19.如图,在四棱锥中,底面是菱形,,且侧面平面,点是的中点(1)求证:(2)若,求证:平面平面20.已知函数.(1)若函数的定义域为,求的取值范围;(2)设函数.若对任意,总有,求的取值范围.21.某化工企业致力于改良工艺,想使排放的废气中含有的污染物数量逐渐减少.设改良工艺前所排放的废气中含有的污染物数量为,首次改良工艺后所排放的废气中含有的污染物数量为,第次改良工艺后所排放的废气中含有的污染物数量为,则可建立函数模型,其中是指改良工艺的次数.已知,(参考数据:).(1)试求该函数模型的解析式;(2)若该地环保部门要求,企业所排放的废气中含有的污染物数量不能超过,试问至少进行多少次改良工艺才能使该企业所排放的废气中含有的污染物数量达标?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】,所以,故选A.考点:集合运算.2、B【解题分析】根据同一函数的概念,结合函数的定义域与对应法则,逐项判定,即可求解.【题目详解】对于A中,函数的定义为,因为函数的定义域为,所以两函数的定义域不同,不是同一函数;对于B中,函数与函数的定义域和对应法则都相同,所以是同一函数;对于C中,函数与函数的对应法则不同,不是同一函数;对于D中,函数的定义域为,因为函数的定义域为,所以两函数的定义域不同,不是同一函数.故选:B.3、D【解题分析】因为E是DC的中点,所以,∴,∴,考点:平面向量的几何运算4、D【解题分析】令得,作出和在上的函数图象如图所示,由图像可知和在上有个交点,∴在上有个零点,∵,均是偶函数,∴在定义域上共有个零点,故选点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等5、B【解题分析】利用终边相同角同名函数相同,可转化为求的余弦值即可.【题目详解】.故选B.【题目点拨】本题主要考查了三角函数中终边相同的角三角函数值相同及特殊角的三角函数值,属于容易题.6、C【解题分析】首先得出f(x1)是最小值,f(x2)是最大值,可得|x1﹣x2|的最小值为函数的半个周期,根据周期公式可得答案【题目详解】函数,∵对任意x∈R都有f(x1)≤f(x)≤f(x2),∴f(x1)是最小值,f(x2)是最大值;∴|x1﹣x2|的最小值为函数的半个周期,∵T=2π,∴|x1﹣x2|的最小值为π,故选:C.7、D【解题分析】由指数和对数函数单调性结合中间量0和1来比较a,b,c的大小关系即可有结果.【题目详解】因为,,所以故选:D8、D【解题分析】∵α∈,∴2α∈(0,π).∵cosα=,∴cos2α=2cos2α-1=-,∴sin2α=,而α,β∈,∴α+β∈(0,π),∴sin(α+β)=,∴cos(α-β)=cos[2α-(α+β)]=cos2αcos(α+β)+sin2αsin(α+β)==.9、B【解题分析】作出函数图像,数形结合求解即可.【题目详解】解:根据题意,x3-1故函数y=x3与由于函数y=x3与所以方程x3所以函数fx故选:B10、B【解题分析】根据零点存在性定理,因为,所以函数零点在区间(3,4)内,故选择B考点:零点存在性定理二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】先画出函数图像并判断,再根据范围和函数单调性判断时取最大值,最后计算得到答案.【题目详解】如图所示:根据函数的图象得,所以.结合函数图象,易知当时在上取得最大值,所以又,所以,再结合,可得,所以.故答案为:【题目点拨】本题考查对数型函数的图像和性质、函数的单调性的应用和最值的求法,是中档题.12、7【解题分析】利用指数式与对数式的互化,对数运算法则计算作答.【题目详解】.故答案为:713、【解题分析】根据被开放式大于等于零和对数有意义,解对数不等式得到结果即可.【题目详解】∵函数∴x>0且,∴∴函数的定义域为故答案为【题目点拨】本题考查了根据函数的解析式求定义域的应用问题,是基础题目14、【解题分析】由题得,解不等式得不等式的解集.【题目详解】由题得,所以.所以不等式的解集为.故答案为【题目点拨】本题主要考查正切函数的图像和性质,考查三角不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.15、【解题分析】根据题意,将函数写成分段函数的形式,分析可得其最小值,即可得的值,进而可得,由减函数的定义可得,解得的范围,即可得答案【题目详解】根据题意,,则,根据单调性可得先减后增,所以当时,取得最小值2,则有,则,因为为减函数,必有,解可得:,即m的取值范围为;故答案为.【题目点拨】本题考查函数单调性、函数最值的计算,关键是求出c的值.16、(答案不唯一)【解题分析】根据余弦函数的性质,构造满足题意的函数,由此即可得到结果.详解】由题意可知,,因为的周期为,满足条件①;又,所以,满足条件②;由于函数在区间上单调递减,所以区间上单调递减,故满足条件③.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0(2)2【解题分析】(1)利用诱导公式化简每部分,化简求值;(2)每一部分都化简成以10为底的对数,按照对数运算公式化简求值.【题目详解】(1)解:原式.(2)解:原式.【题目点拨】本题考查三角函数诱导公式和对数运算公式化简求值,意在考查基本公式和计算能力,属于基础题型.18、(1)0;(2);(3);(4).【解题分析】(1)(2)利用和角的余弦公式,差角的正弦结合诱导公式分别计算作答.(3)(4)逆用二倍角的正弦、余弦公式求解作答.【小问1详解】.【小问2详解】.【小问3详解】.【小问4详解】.19、(1)见解析;(2)见解析【解题分析】分析:(1)可根据为等腰三角形得到,再根据平面平面可以得到平面,故.(2)因及是中点,从而有,再根据平面得到,从而平面,故平面平面.详解:(1)证明:因为,点是棱的中点,所以,平面.因为平面平面,平面平面,平面,所以平面,又因为平面,所以.(2)证明:因为,点是的中点,所以.由(1)可得,又因为,所以平面,又因为平面,所以平面平面点睛:线线垂直的证明,可归结为线面垂直,也可以转化到平面中的某两条直线的垂直问题,而面面垂直的证明,可转化为线面垂直问题,也转化为证明二面角为直二面角.20、(1);(2)【解题分析】(1)等价于在上恒成立.解得的取值范围是;(2)等价于在上恒成立,所以的取值范围是.试题解析:(1)函数的定义域为,即在上恒成立.当时,恒成立,符合题意;当时,必有.综上,的取值范围是.(2)∵,∴.对任意,总有,等价于在上恒成立在上恒成立.设,则(当且仅当时取等号).,在上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 动火特殊作业安全培训
- 医院中药房实习生培训
- 《头颈肩上肢疼痛》课件
- 中建五局安全员述职
- 入职培训要求讲
- 低血糖反应的应急流程
- 团日活动消防安全
- 《员工管理激励心态》课件
- 医疗保健质量与安全管理会议
- 【培训课件】秘书公务礼仪
- 《建筑工程设计文件编制深度规定》(2022年版)
- 2024年版的企业绩效评价标准
- 2024年共青团入团积极分子考试题库(附答案)
- MOOC 职场英语-西南交通大学 中国大学慕课答案
- JTG C10-2007 公路勘测规范
- (高清版)DZT 0216-2020 煤层气储量估算规范
- JJG 162-2019饮用冷水水表 检定规程(高清版)
- 围棋教案13教学设计
- 称念诸佛名号功德(3)
- 专用车六性分析报告
- 新零售小米之家营销策略
评论
0/150
提交评论