湖南省两校联考2024届高一数学第一学期期末教学质量检测试题含解析_第1页
湖南省两校联考2024届高一数学第一学期期末教学质量检测试题含解析_第2页
湖南省两校联考2024届高一数学第一学期期末教学质量检测试题含解析_第3页
湖南省两校联考2024届高一数学第一学期期末教学质量检测试题含解析_第4页
湖南省两校联考2024届高一数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省两校联考2024届高一数学第一学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数是定义在上的偶函数,当时,,则A. B.C. D.2.若,求()A. B.C. D.3.已知集合A=,B=,则A.AB= B.ABC.AB D.AB=R4.已知是球的直径上一点,,平面,为垂足,截球所得截面的面积为,则球的表面积为A. B.C. D.5.若直线与直线垂直,则()A.6 B.4C. D.6.已知集合,,若,则实数a值的集合为()A. B.C. D.7.“”是“”的()A.充要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件8.幂函数f(x)的图象过点(4,2),那么f()的值为()A. B.64C.2 D.9.已知,则,,的大小关系为()A. B.C. D.10.下列命题是全称量词命题,且是真命题的为()A.有些四边形的内角和不等于360° B.,C., D.所有能被4整除的数都是偶数二、填空题:本大题共6小题,每小题5分,共30分。11.下图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后,左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体的体积为________.12.在函数的图像上,有______个横、纵坐标均为整数的点13.不等式的解集是___________.14.下面四个命题:①定义域上单调递增;②若锐角,满足,则;③是定义在上的偶函数,且在上是增函数,若,则;④函数的一个对称中心是;其中真命题的序号为______.15.已知幂函数y=xα的图象过点(4,),则α=__________.16.命题“,”的否定是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,且.(1)判断的奇偶性;(2)证明在上单调递增;(3)若不等式在上恒成立,求实数的取值范围.18.如图,三棱锥中,平面平面,,,(1)求三棱锥的体积;(2)在平面内经过点,画一条直线,使,请写出作法,并说明理由19.运货卡车以千米/时的速度匀速行驶300千米,按交通法规限制(单位千米/时),假设汽车每小时耗油费用为元,司机的工资是每小时元.(不考虑其他因所素产生的费用)(1)求这次行车总费用(元)关于(千米/时)的表达式;(2)当为何值时,这次行车的总费用最低?求出最低费用的值20.已知函数,(且.)(1)求的定义域,并判断函数的奇偶性;(2)设,对于,恒成立,求实数m的取值范围21.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点为圆心的两个同心圆弧和延长后通过点,的两条线段围成.设圆弧和圆弧所在圆的半径分别为米,圆心角为θ(弧度)(1)若,,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD的长度为多少时,花坛的面积最大?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由函数是定义在上的偶函数,借助奇偶性,将问题转化到已知区间上,再求函数值【题目详解】因为是定义在上的偶函数,且当时,,所以,选择D【题目点拨】已知函数的奇偶性问题,常根据函数的奇偶性,将问题进行转化,转化到条件给出的范围再进行求解2、A【解题分析】根据,求得,再利用指数幂及对数的运算即可得出答案.【题目详解】解:因为,所以,所以.故选:A.3、A【解题分析】由得,所以,选A点睛:对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理4、C【解题分析】设球的半径为,根据题意知球心到平面的距离,截球所得截面圆的半径为1,由,截面圆半径,球半径构成直角三角形,利用勾股定理,即可求出球半径,进而求出球的表面积.【题目详解】如图所示,设球的半径为,因为,所以,又因为截球所得截面的面积为,所以,在中,有,即,所以,故球的表面积,故选:C.【题目点拨】本题主要考查球的基本应用,答题关键点在于明确球心到截面的距离,截面圆半径,球半径三者可构成直角三角形,进而满足勾股定理.5、A【解题分析】由两条直线垂直的条件可得答案.【题目详解】由题意可知,即故选:A.6、D【解题分析】,可以得到,求出集合A的子集,这样就可以求出实数值集合.【题目详解】,的子集有,当时,显然有;当时,;当时,;当,不存在符合题意,实数值集合为,故选:D.【题目点拨】本题考查了通过集合的运算结果,得出集合之间的关系,求参数问题.重点考查了一个集合的子集,本题容易忽略空集是任何集合的子集这一结论.7、D【解题分析】求得的解集,结合充分条件、必要条件的判定方法,即可求解.【题目详解】由,可得或,所以“”是“或”成立的充分不必要条件,所以“”是“”必要不充分条件.故选:D.8、A【解题分析】设出幂函数,求出幂函数代入即可求解.【题目详解】设幂函数为,且图象过点(4,2),解得,所以,,故选:A【题目点拨】本题考查幂函数,需掌握幂函数的定义,属于基础题.9、B【解题分析】利用函数单调性及中间值比大小.【题目详解】,且,故,,故.故选:B10、D【解题分析】根据定义分析判断即可.【题目详解】A和C都是存在量词命题,B是全称量词命题,但其是假命题,如时,,D选项为全称命题且为真命题故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】该几何体体积等于两个四棱柱的体积和减去两个四棱柱交叉部分的体积,根据直观图分别进行求解即可.【题目详解】该几何体的直观图如图所示,该几何体的体积为两个四棱柱的体积和减去两个四棱柱交叉部分的体积.两个四棱柱的体积和为.交叉部分的体积为四棱锥的体积的2倍.在等腰中,边上的高为2,则由该几何体前后,左右上下均对称,知四边形为边长为的菱形.设的中点为,连接易证即为四棱锥的高,在中,又所以因为,所以,所以求体积为故答案为:【题目点拨】本题考查空间组合体的结构特征.关键点弄清楚几何体的组成,属于较易题目.12、3【解题分析】由题可得函数为减函数,利用赋值法结合条件及函数的性质即得.【题目详解】因为,所以函数在R上单调递减,又,,,,且当时,,当时,令,则,综上,函数的图像上,有3个横、纵坐标均为整数的点故答案为:3.13、或【解题分析】把分式不等式转化为,从而可解不等式.【题目详解】因为,所以,解得或,所以不等式的解集是或.故答案为:或.14、②③④【解题分析】由正切函数的单调性,可以判断①真假;根据正弦函数的单调性,结合诱导公式,可以判断②的真假;根据函数奇偶性与单调性的综合应用,可以判断③的真假;根据正弦型函数的对称性,我们可以判断④的真假,进而得到答案【题目详解】解:由正切函数的单调性可得①“在定义域上单调递增”为假命题;若锐角、满足,即,即,则,故②为真命题;若是定义在上的偶函数,且在上是增函数,则函数在上为减函数,若,则,则,故③为真命题;由函数则当时,故可得是函数的一个对称中心,故④为真命题;故答案为:②③④【题目点拨】本题考查的知识点是命题的真假判断与应用,函数单调性的性质,偶函数,正弦函数的对称性,是对函数性质的综合考查,熟练掌握基本初等函数的性质是解答本题的关键15、【解题分析】把点的坐标代入幂函数解析式中即可求出.【题目详解】解:由幂函数的图象过点,所以,解得.故答案为:.16、,##【解题分析】根据全称量词命题的否定即可得出结果.【题目详解】由题意知,命题“”的否定为:.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)奇函数(2)详见解析(3)【解题分析】(1)运用代入法,可得m值,计算f(-x)与f(x)比较即可得到结论;(2)运用单调性的定义证明,注意取值、作差和变形、定符号和下结论(3)若不等式在上恒成立,所以在上恒成立,求即可得解.【题目详解】(1)即所以函数的定义域为所以为奇函数(2)设且,则因为且所以,所以即则在上单调递增(3)若不等式在上恒成立所以在上恒成立由(2)知在上递增所以所以【题目点拨】本题考查函数的奇偶性和单调性的判断和证明,考查不等式恒成立,采用分离参数是常用方法,属于中档题18、(1)见解析(2)见解析【解题分析】(1)取的中点,连接,因为,所以,由面面垂直的性质可得平面,求出的值,利用三角形面积公式求出底面积,从而根据棱锥的条件公式可得三棱锥的体积;(2)在平面中,过点作,交于点,在平面中,过点作,交于点,连结,则直线就是所求的直线,根据作法,利用线面垂直的判定定理与性质可证明.试题解析:(1)取的中点,连接,因为,所以,又因为平面平面,平面平面,平面,所以平面,因为,,所以,因为,所以的面积,所以三棱锥的体积(2)在平面中,过点作,交于点,在平面中,过点作,交于点,连结,则直线就是所求的直线,由作法可知,,又因为,所以平面,所以,即19、(1)(2)当时,这次行车的总费用最低,最低费用为元【解题分析】(1)先得到行车所用时间,再根据汽车每小时耗油费用和司机的工资求解;(2)由(1)的结论,利用基本不等式求解.【小问1详解】解:行车所用时间,汽油每小时耗油费用为元,司机的工资是每小时元,所以行车总费用为:;【小问2详解】因为,当且仅当,即时,等号成立,所以当时,这次行车的总费用最低,最低费用为元.20、(1)定义域为;为奇函数;(2)【解题分析】(1)由函数的定义域满足,可得其定义域,由可判断其奇偶性.(2)先由对数型函数的定义域可得,当时,由对数函数的单调性可得在上恒成立,即在上恒成立,即可得出答案.【题目详解】(1)由题意,函数,由,可得或,即定义域为;由,即有,可得为奇函数;(2)对于,恒成立,由,则,又,则由,即在上恒成立.由,即在上恒成立.由,可得时,y取得最小值8,则,因此可得,时,的取值范围是:【题目点拨】关键点睛:本题考查对数型函数的定义域和奇偶性的判断,不等式恒成立求参数问题,解答本题的关键是由对数型函数的定义域则满足,可得,然后将问题化为由,即在上恒成立,属于中档题.21、(1);(2)当线段的长为5米时,花坛的面积最大.【解题分析】(1)根据扇形的面积公式,求出两个扇形面积之差就是所求花坛的面积即可;(2)利用弧长公式根据预算费用总计1200元

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论