江西省吉安市新干中学2024届高一上数学期末质量跟踪监视试题含解析_第1页
江西省吉安市新干中学2024届高一上数学期末质量跟踪监视试题含解析_第2页
江西省吉安市新干中学2024届高一上数学期末质量跟踪监视试题含解析_第3页
江西省吉安市新干中学2024届高一上数学期末质量跟踪监视试题含解析_第4页
江西省吉安市新干中学2024届高一上数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省吉安市新干中学2024届高一上数学期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.以,为基底表示为A. B.C. D.2.已知集合A={1,2,3,4},B={x∈R|0<x-1<3},则A∩B=()A. B.{2,3}C.{1,2,3} D.{2,3,4}3.过圆C:(x﹣2)2+(y﹣2)2=4的圆心,作直线分别交x,y正半轴于点A,B,△AOB被圆分成四部分(如图),若这四部分图形面积满足SI+SⅣ=SⅡ+SⅢ,则这样的直线AB有A.0条 B.1条C.2条 D.3条4.过点且与直线平行的直线方程是()A. B.C. D.5.已知函数为偶函数,且在上单调递减,则的解集为A. B.C. D.6.若,则的最小值为A.-1 B.3C.-3 D.17.如图,已知水平放置的按斜二测画法得到的直观图为,若,,则的面积为()A.12 B.C.6 D.38.对于任意的实数,定义表示不超过的最大整数,例如,,,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.已知,则().A. B.C. D.10.若,则()A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知且,且,函数的图象过定点A,A在函数的图象上,且函数的反函数过点,则______.12.函数的定义域是______13.若函数(,且)的图象经过点,则___________.14.已知函数,现有如下几个命题:①该函数为偶函数;

②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数的值域为.其中正确命题的编号为______15.已知函数则不等式的解集是_____________16.已知函数,关于方程有四个不同的实数解,则的取值范围为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,.(1)当时,求;(2)在①,②,③这三个条件中任选一个,补充在(2)问中的横线上,并求解.若___________,求实数的取值范围.(注:如果选择多个条件分别解答,按第一个解答计分)18.已知(1)求;(2)若,且,求19.已知函数.(1)求方程在上的解;(2)求证:对任意的,方程都有解20.已知(1)化简;(2)若=2,求的值.21.已知函数的图象过点,.(1)求函数的解析式;(2)若函数在区间上有零点,求整数k的值;(3)设,若对于任意,都有,求m的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】设,利用向量相等可构造方程组,解方程组求得结果.【题目详解】设则本题正确选项:【题目点拨】本题考查平面向量基本定理的应用,关键是能够通过向量相等构造出方程组,属于基础题.2、B【解题分析】求解一元一次不等式化简,再由交集运算得答案【题目详解】解:,2,3,,,,2,3,,故选:3、B【解题分析】数形结合分析出为定值,因此为定值,从而确定直线AB只有一条.【题目详解】已知圆与轴,轴均相切,由已知条件得,第部分的面积是定值,所以为定值,即为定值,当直线绕着圆心C移动时,只有一个位置符合题意,即直线AB只有一条.故选:B【题目点拨】本题考查直线与圆的实际应用,属于中档题.4、D【解题分析】先由题意设所求直线为:,再由直线过点,即可求出结果.【题目详解】因为所求直线与直线平行,因此,可设所求直线为:,又所求直线过点,所以,解得,所求直线方程为:.故选D【题目点拨】本题主要考查求直线的方程,熟记直线方程的常见形式即可,属于基础题型.5、B【解题分析】根据为偶函数,可得;根据在上递减得;然后解一元二次不等式可得【题目详解】解:为偶函数,所以,即,,由在上单调递减,所以,,可化为,即,解得或故选:【题目点拨】本题主要考查奇偶性与单调性的应用以及一元二次不等式的解法,还考查了运算求解的能力,属于中档题.6、A【解题分析】分析:代数式可以配凑成,因,故可以利用基本不等式直接求最小值.详解:,当且仅当时等号成立,故选A.点睛:利用基本不等式求最值时,要注意“一正、二定、三相等”,有时题设给定的代数式中没有和为定值或积为定值的形式,我们需要对代数式变形,使得变形后的代数式有和为定值或者积为定值.特别要注意检验等号成立的条件是否满足.7、C【解题分析】由直观图,确定原图形中线段长度和边关系后可求得面积【题目详解】由直观图,知,,,所以三角形面积为故选:C8、B【解题分析】根据充分必要性分别判断即可.【题目详解】若,则可设,则,,其中,,,即“”能推出“”;反之,若,,满足,但,,即“”推不出“”,所以“”是“”必要不充分条件,故选:B.9、C【解题分析】将分子分母同除以,再将代入求解.【题目详解】.故选:C【题目点拨】本题主要考查同角三角函数基本关系式,还考查了运算求解的能力,属于基础题.10、C【解题分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果【题目详解】将式子进行齐次化处理得:故选:C【题目点拨】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论二、填空题:本大题共6小题,每小题5分,共30分。11、8【解题分析】由图象平移变换和指数函数的性质可得点A坐标,然后结合反函数的性质列方程组可解.【题目详解】函数的图象可以由的图象向右平移2各单位长度,再向上平移3个单位长度得到,故点A坐标为,又的反函数过点,所以函数过点,所以,解得,所以.故答案为:812、【解题分析】,即定义域为点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0的定义域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定义域均为R.(6)y=logax(a>0且a≠1)的定义域为(0,+∞)13、【解题分析】把点的坐标代入函数的解析式,即可求出的值.【题目详解】因为函数的图象经过点,所以,解得.故答案为:.14、②③【解题分析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.15、【解题分析】分和0的大小关系分别代入对应的解析式即可求解结论.【题目详解】∵函数,∴当,即时,,故;当,即时,,故;∴不等式的解集是:.故答案为:.16、【解题分析】作出的图象如下:结合图像可知,,故令得:或,令得:,且等号取不到,故,故填.点睛:一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑函数图像来解决,转化为过定点的直线与抛物线变形图形的交点问题,对函数图像处理能力要求较高.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)选①或.选②③或.【解题分析】(1)分别求出两个集合,再根据并集的运算即可得解;(2)选①,根据,得,分和两种情况讨论即可得解.选②,根据,得,分和两种情况讨论即可得解.选③,根据,分和两种情况讨论即可得解.【小问1详解】解:当时,,,所以;【小问2详解】解:选①,因为,所以,当时,,解得;当时,因为,所以,解得,综上所述,或.选②,因为,所以,或,当时,,解得,符合题意;当时,因为,所以或,解得或,综上所述,或.选③,当时,,解得,符合题意;当时,因为,所以或,解得或,综上所述,或.18、(1)(2)【解题分析】(1)根据已知条件求出tanα,将要求的式子构造成关于正余弦的齐次式,将弦化为切即可求值;(2)根据角的范围和的正负确定的范围,求出sin(),根据即可求解.【小问1详解】,;【小问2详解】,,,又,.19、(1)或;(2)证明见解析【解题分析】(1)根据诱导公式和正弦、余弦函数的性质可得答案;(2)令,分,,三种情况,分别根据零点存在定理可得证.【题目详解】解:(1)由,得,所以当时,上述方程的解为或,即方程在上的解为或;(2)证明:令,则,①当时,,令,则,即此时方程有解;②当时,,又∵在区间上是不间断的一条曲线,由零点存在性定理可知,在区间上有零点,即此时方程有解;③当时,,,又∵在区间上是不间断的一条曲线,由零点存在性定理可知,在区间上有零点,即此时方程有解.综上,对任意的,方程都有解20、(1)=(2)2【解题分析】(1)利用诱导公式即可化简.(2)利用同角三角函数的基本关系化简并将(1)中的数据代入即可.【题目详解】解:(1).(2)由(1)知,【题目点拨】本题考查了三角函数的诱导公式以及同角三角函数的基本关系“齐次式”的运算,需熟记公式,属于基础题.21、(1);(2)的取值为2或3;(3).【解题分析】(1)根据题意,得到,求得的值,即可求解;(2)由(1)可得,得到,设,根据题意转化为函数在上有零点,列出不等式组,即可求解;(3)求得的最大值,得出,得到,设,结合单调性和最值,即可求解.【题目详解】(1)函数的图像过点,所以,解得,所以函数的解析式为.(2)由(1)可知,,令,得,设,则函数在区间上有零点,等价于函数在上有零点,所以,解得,因为,所以的取值为2或3.(3)因为且,所以且,因为,所以的最大值可能是或,因为所以,只需,即,设,在上单调递增,又,∴,即,所以,所以m的取值范围是.【题目点拨】已知函数的零点个数求解参数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论