




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CHAPTERWritingSystem ByHuiWangOutlineofthischapterBasicLinearMatrixAlgebra&StateMechanicalRotationalThermalHydraulicLinearLiquid-Level AnalogousExamplethesystemshowninnode f=fK=K(xa-xb)node fK=fM+fB=MD2
Node i=v
If
NodeNodei= +12=b+vbRi=xbDxRComparingagain!!Find55KMB(b)CorrespondingmechanicalKMB(b)CorrespondingmechanicalAnalogouscircuitsrepresentsystemsforwhichthedifferentialequationshavethesameform.Thecorrespondingvariablesandparametersintwocircuitsrepresentedbyequationsofthesameformarecalledanalogs.Anelectriccircuitcanbedrawnthatlookslikethemechanicalcircuitandisrepresentedbynodeequations.TheanalogsarelistedinTable2.4.Thereisaphysicalsimilaritybetweenforcefandcurrenti,…seriesNodesinthemechanicalnetworkareanalogoustonodesintheelectricAnalogousf(f(t)-f(t)-f(t)12Md2dtf(t)=Bf2(t)=AnalogousCircuits:Example:S-M-DSystem WritecircuitEq.of +i1+ = 2
1 =
Dy=1Li i2
=1RNote MDMD2y+ +Ky=OutlineofthischapterBasicLinearMatrixAlgebra&StateMechanicalRotationalThermalHydraulicLinearLiquid-Level OtherMathematicModeling-----MechanicalRotationalTheequationcharacterizingrotationalsystemsaresimilartothosefortranslationsystems,wherethedisplacement,velocity,andaccelerationtermsarenowangularquantities.aceJKBbdfaceJKBbdfFig.2.14NetworkelementsmechanicalrotationalThethreeelementsinarotationalsystemareinertia(惯量),thespring,andthedashpot.Themechanical-networkrepresentationoftheseelementsisshowninFig.2.14.ThetorqueappliedtoabodyhavingamomentofinertiaJproducesanangularacceleration. TJ=Ja=JDw=JD2q(2.73)Whenatorqueisappliedtoaspring,thespringistwistedbyanangleq. Toproducemotionofthebody,atorquemustbeappliedtoovercomethereactiondampingtorque.ThedampingtorqueTB=B(we-wf)=B(Dqe-Dqf)Thetorqueequationiswrittenforeachnodebyequatingthesumofthetorqueateachnodetozero. =Ja=JDw= =Ma= =Ma=MDv=MD2fK=K(xc-xdifxd= = TB=B(we-wf)=B(Dqe-Dqf) fB=B(ve-vf)=B(Dxe
-DxfaaceJKBbdfFig.2.14NetworkelementsmechanicalrotationalThesystemshowninFig.2.15hasamass,withamomentofinertiaJ,immersedinafluid.AtorqueTisappliedtothemass.KBFig.2.15(a)SimplerotationalThereisaonenodehavingadisplacementq;thereforeonlyoneequationisnecessaryAnelectricalanalogcanbeobtainedthustorqueKBFig.2.15(a)SimplerotationalJBK2.15(b)CorrespondingmechanicalJD2q+BDq+KqJBK2.15(b)Correspondingmechanical
d +
JfmechanicalJsJs2q(s)+fsq(s)=M\q(s)M1s(Js+fMultiple-elementmechanicalrotationalThesystemrepresentedbyFig.2.16ahastwodisksthathavedampingbetweenthemandalsobetweeneachofthemandtheframe.ThecorrespondingmechanicalnetworkisdrawninFig.2.16b.Multiple-elementmechanicalrotationalThesystemrepresentedbyFig.2.16ahastwodisksthathavedampingbetweenthemandalsobetweeneachofthemandtheframe.ThecorrespondingmechanicalnetworkisdrawninFig.2.16b.Node1:K1q1-K2q2=T(t) Node2:-K1q1+[J1D2+(B1+B3)D+K1]q2-B3Dq3=0(2.78)Node3:-B3Dq2+[J2D2+(B2+B3)D+K2]q3= J1B1J2K2Fig.2.16(b)Rotationalsystem‘scorrespondingmechanicalMultiple-elementmechanicalrotationalThesethreeequationscanbesolvedsimultaneouslyforq1,q2,andq3asafunctionoftheappliedtorque.G1(D)=TG(D)G(D)G1(D)=TG(D)G(D)AndtheoveralltransferfunctionofthesystemisG=G=GG =q1q2q3=Tq Question2.17:Stateequationforthissystem? Question2.17:Stateequationforthissystem?Figure2.17DetailedandoverallrepresentationsofMoremechanicalrotationalsystemexamplesaresimilar,forEffectivemomentofinertiaanddampingofageartrainshowninFig.2.18ainP.45EffectivemomentofinertiaanddampingofageartrainEffectivemomentofinertiaanddampingofageartrainOtherMathematicModelingThermalSystems(热力系统Alimitednumberofthermalsystemscanberepresentedbydifferentialequations.Thebasicrequirementisthatthetemperatureofabodybeconsidereduniform.Thenecessaryconditionofequilibriumrequiresthattheheataddedtothesystemequaltheheatstoredplustheheatcarriedaway.Thisrequirementcanalsobeexpressedintermsofrateofheatflow.CRFig.2.19NetworkofCRFig.2.19NetworkofthermalAthermalsystemnetworkisdrawnbythermalcapacitanceandthermalresistance.Theadditionalheatstoredinabodywhosetemperatureisraisedfromq1toq2isgivenbyIntermsofrateofheat q=CD(q2-q1)Thethermalcapacitancedeterminestheamountofheatstoredinabody,-----likeacapacitorinanelectriccircuit.q=q3-qRRateofheatflowthroughabodyintermsoftheq=q3-qRThethermalThethermalresistancedeterminestherateofheatflowthroughthebody,-----likearesistorinanelectriccircuit.Considerathinglass-walledthermometer(haveacapacitanceCandaresistanceR)filledwithmercurythathasstabilizedatatemperatureq1.Itisplungedintoabathoftemperaturesq0att=0.Thetemperatureofthemercuryisqm.Theflowofheatintothethermometer q=q0-qmRTheheatenteringthethermometerstoredintheC,isgivenby
h=D
Theseequationscanbecombinedtoh=q0-qm =C(q-q RCDqm+qm=q0 (2.90)ThethermalnetworkisdrawninFig.2.20.Thenodeequationforthiscircuit,withthetemperatureconsideredasavoltage,givesEq.(2.89)directly.Then,thetransferfunctionG=qm/q0maybe SimplerepresentationofRCD SimplerepresentationofG(D)=qmq
RCD+ G(s)=qm(s) x1uLetx=q,u= x1u
q0(
RCs+Objective:heatingcold-liquidtothetemperatureqa,Wqcqa,Wqc,environmenttemperatureInput(controlvariable)canW,qc,qcandq,etc..ThemostsuitablevariableisW.Othersareasdisturbvariables.StepStep2:AssumptionandStep3:developmathematics •LetQexpressesquantityofqa,qa,Wqc,environmenttemperatureQQ+Firstly,considersteadystate, =Q +Q =Q +QQQ +Q =QQ +Q =QQ =qcccqc,Q =WH QQ +Q =Qqa,Wqa,Wqc,environmenttemperatureAssumingspecificvolumeofc =c =∵qa=qc+ »qwhereWisvery\\qa=qcWThisThisisasystem’ssteadystatemodel. y=a+bx Qc+Qs=ThermalSystems:DirectsteamheaterSecondly,considersystemdynamicmodel,itismore
+Q
Q
qa, hot- andVisavailable isfluid’sdensity,environmenttemperature
qc,qc
whereCiscalledcapacitycoefficient.Itrepresentsacapabilitytostoringenergyofthetank.\
+q
cqa=
ccqc+\C dqa+q cqa=qcqc+WHt Sc
OtherMathematicModelingDirectsteam R=qa
Rrepresentsaresistancetopreventheatenergydepartfromthetank.Itiscalledheat∵q =qc+ »q q, Cdqa
1qaR
1qc
+
dqa+q
=qc+ dqa+qa=qc+qc,qcenvironmenttemperatureThermalSystems:Directsteam
+qa=qc+qa,Wqa,Wqc,environmenttemperature (s)=qa(s)= W(s Ts+qa(s qGd(s)qcIfthereis
(s Ts+IncrementformdifferentialInprocesscontrol,weusuallyconsiderincrementequationofvariables,ForEx.Systemdynamicequation dqa+qa
=qc+ ** \qa =qc0+qa
W dqa+qa
qa
=qc+
KWWeobtainincrementFirst-orderConsideringEqs.labeled**,whichisfirst-orderdifferentialequation,thoughthemodelandRCcircuitmodelrepresenteddifferentsystems,theirtransferfunctionsbetweentheinputandoutputhavesameform.Tde0+e0=
E0(s)(Ts+1)=Ei dqa+qa=qc+
E0(sTsWKqTsWKqa(s)
Ts+First-orderControlpathFirst-order
TsTs1qa(s)First-ordersystem’sstepG(s)=Y(s)= G(s)=Y(s)= U(sTs+Tdy(t)
y(t)= TtT
y(t)t
OtherMathematicModelingLiquid-LevelSystem(液位系统Two-tankliquid-levelcontrolsystemconsistsoftwofirst-orderdependentplantsthatareconnectedinseries.Noted,heretheheightsh1andh2ofthetanksarecoupling(耦合)(seeP53Fig.2.23).Objective:holdh2unchanged,whichrelatedtoqoutandqinqObjective:holdh2unchanged,whichrelatedtoqoutandqinA=cross-sectionaltankObjective:holdh2unchanged,whichrelatedtoqoutandTankTank
dh=-q 1TankTankd2hdt+(T1+T2+A1R2 2+h2=R2q -R2q Notethisiscoupling1TankTankd2hdt+(T1+T2+A1R2 2+h2=R2q -R2q LiquidlevelSystem-1:transfercontrolGcontrolG(D)u(t= h2(t)-R2-T1R2T1T2D2++A1R2)D+ (D)y(t =h2(t)(tqin(tRT1T2D2+ + +A1R2)D+LiquidlevelSystem-1:stateAssignedstateAssignedstatevariablesx=h1x=h1 h2x-1x21= R +x0-R -1T-1AandinputvariablesLetoutputvariables h2y=hy=1y=1x0x1 2LiquidlevelSystem-Two-tankliquidlevelcontrolsystemasFig.below.Definitions A1TankA1TankTankA=cross-sectionaltankObjective:Objective:holdh2unchanged,whichrelatedtoqoutandqinNotedthattheheightsandh2herearemeans:controlqout( LiquidlevelSystem-2whereTank Disturb
=q1
- Tank h2
eliminateinternaleliminateinternalvariablesq1,h1,etc.thenwegot
Tank
R1RR = (R 1
-h2Tank Controlinput A1TankA1TankTankThisisaninput/outputmodel,expressestherelationshipofoutputh2andd
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 演讲中的情感叙事策略考核试卷
- 保健品市场渠道消费者行为分析考核试卷
- 绿化施工组织与管理考核试卷
- 频谱分析仪应用考核试卷
- TRIZ创新原理与应用 课件汇 第11-19章 科学效应知识库-专利战略
- 计划生育与妇女保健课后作业
- 公司员工的试用期转正工作总结14篇
- 二手房屋购买合同(合集6篇)
- 植树科学活动方案
- 汇源橙子促销活动方案
- 智慧型陆基式渔业产业园项目可行性研究报告模板-备案拿地
- 基本药物培训课件资料
- 吉林省长春市2024-2025学年八年级下学期期末测试数学试卷(含答案)
- 2025秋三年级上册语文上课课件 9 犟龟
- 电子文件长期保存技术-洞察及研究
- 广告安装培训课件
- 石灰厂中控室管理制度
- 《党政机关厉行节约反对浪费条例》培训课件
- 中外航海文化知到课后答案智慧树章节测试答案2025年春中国人民解放军海军大连舰艇学院
- 人工智能引论智慧树知到课后章节答案2023年下浙江大学
- 海宁市国有公司对外担保行为监督管理暂行办法
评论
0/150
提交评论