版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CHAPTERWritingSystem ByHuiWangOutlineofthischapterBasicLinearMatrixAlgebra&StateMechanicalRotationalThermalHydraulicLinearLiquid-Level AnalogousExamplethesystemshowninnode f=fK=K(xa-xb)node fK=fM+fB=MD2
Node i=v
If
NodeNodei= +12=b+vbRi=xbDxRComparingagain!!Find55KMB(b)CorrespondingmechanicalKMB(b)CorrespondingmechanicalAnalogouscircuitsrepresentsystemsforwhichthedifferentialequationshavethesameform.Thecorrespondingvariablesandparametersintwocircuitsrepresentedbyequationsofthesameformarecalledanalogs.Anelectriccircuitcanbedrawnthatlookslikethemechanicalcircuitandisrepresentedbynodeequations.TheanalogsarelistedinTable2.4.Thereisaphysicalsimilaritybetweenforcefandcurrenti,…seriesNodesinthemechanicalnetworkareanalogoustonodesintheelectricAnalogousf(f(t)-f(t)-f(t)12Md2dtf(t)=Bf2(t)=AnalogousCircuits:Example:S-M-DSystem WritecircuitEq.of +i1+ = 2
1 =
Dy=1Li i2
=1RNote MDMD2y+ +Ky=OutlineofthischapterBasicLinearMatrixAlgebra&StateMechanicalRotationalThermalHydraulicLinearLiquid-Level OtherMathematicModeling-----MechanicalRotationalTheequationcharacterizingrotationalsystemsaresimilartothosefortranslationsystems,wherethedisplacement,velocity,andaccelerationtermsarenowangularquantities.aceJKBbdfaceJKBbdfFig.2.14NetworkelementsmechanicalrotationalThethreeelementsinarotationalsystemareinertia(惯量),thespring,andthedashpot.Themechanical-networkrepresentationoftheseelementsisshowninFig.2.14.ThetorqueappliedtoabodyhavingamomentofinertiaJproducesanangularacceleration. TJ=Ja=JDw=JD2q(2.73)Whenatorqueisappliedtoaspring,thespringistwistedbyanangleq. Toproducemotionofthebody,atorquemustbeappliedtoovercomethereactiondampingtorque.ThedampingtorqueTB=B(we-wf)=B(Dqe-Dqf)Thetorqueequationiswrittenforeachnodebyequatingthesumofthetorqueateachnodetozero. =Ja=JDw= =Ma= =Ma=MDv=MD2fK=K(xc-xdifxd= = TB=B(we-wf)=B(Dqe-Dqf) fB=B(ve-vf)=B(Dxe
-DxfaaceJKBbdfFig.2.14NetworkelementsmechanicalrotationalThesystemshowninFig.2.15hasamass,withamomentofinertiaJ,immersedinafluid.AtorqueTisappliedtothemass.KBFig.2.15(a)SimplerotationalThereisaonenodehavingadisplacementq;thereforeonlyoneequationisnecessaryAnelectricalanalogcanbeobtainedthustorqueKBFig.2.15(a)SimplerotationalJBK2.15(b)CorrespondingmechanicalJD2q+BDq+KqJBK2.15(b)Correspondingmechanical
d +
JfmechanicalJsJs2q(s)+fsq(s)=M\q(s)M1s(Js+fMultiple-elementmechanicalrotationalThesystemrepresentedbyFig.2.16ahastwodisksthathavedampingbetweenthemandalsobetweeneachofthemandtheframe.ThecorrespondingmechanicalnetworkisdrawninFig.2.16b.Multiple-elementmechanicalrotationalThesystemrepresentedbyFig.2.16ahastwodisksthathavedampingbetweenthemandalsobetweeneachofthemandtheframe.ThecorrespondingmechanicalnetworkisdrawninFig.2.16b.Node1:K1q1-K2q2=T(t) Node2:-K1q1+[J1D2+(B1+B3)D+K1]q2-B3Dq3=0(2.78)Node3:-B3Dq2+[J2D2+(B2+B3)D+K2]q3= J1B1J2K2Fig.2.16(b)Rotationalsystem‘scorrespondingmechanicalMultiple-elementmechanicalrotationalThesethreeequationscanbesolvedsimultaneouslyforq1,q2,andq3asafunctionoftheappliedtorque.G1(D)=TG(D)G(D)G1(D)=TG(D)G(D)AndtheoveralltransferfunctionofthesystemisG=G=GG =q1q2q3=Tq Question2.17:Stateequationforthissystem? Question2.17:Stateequationforthissystem?Figure2.17DetailedandoverallrepresentationsofMoremechanicalrotationalsystemexamplesaresimilar,forEffectivemomentofinertiaanddampingofageartrainshowninFig.2.18ainP.45EffectivemomentofinertiaanddampingofageartrainEffectivemomentofinertiaanddampingofageartrainOtherMathematicModelingThermalSystems(热力系统Alimitednumberofthermalsystemscanberepresentedbydifferentialequations.Thebasicrequirementisthatthetemperatureofabodybeconsidereduniform.Thenecessaryconditionofequilibriumrequiresthattheheataddedtothesystemequaltheheatstoredplustheheatcarriedaway.Thisrequirementcanalsobeexpressedintermsofrateofheatflow.CRFig.2.19NetworkofCRFig.2.19NetworkofthermalAthermalsystemnetworkisdrawnbythermalcapacitanceandthermalresistance.Theadditionalheatstoredinabodywhosetemperatureisraisedfromq1toq2isgivenbyIntermsofrateofheat q=CD(q2-q1)Thethermalcapacitancedeterminestheamountofheatstoredinabody,-----likeacapacitorinanelectriccircuit.q=q3-qRRateofheatflowthroughabodyintermsoftheq=q3-qRThethermalThethermalresistancedeterminestherateofheatflowthroughthebody,-----likearesistorinanelectriccircuit.Considerathinglass-walledthermometer(haveacapacitanceCandaresistanceR)filledwithmercurythathasstabilizedatatemperatureq1.Itisplungedintoabathoftemperaturesq0att=0.Thetemperatureofthemercuryisqm.Theflowofheatintothethermometer q=q0-qmRTheheatenteringthethermometerstoredintheC,isgivenby
h=D
Theseequationscanbecombinedtoh=q0-qm =C(q-q RCDqm+qm=q0 (2.90)ThethermalnetworkisdrawninFig.2.20.Thenodeequationforthiscircuit,withthetemperatureconsideredasavoltage,givesEq.(2.89)directly.Then,thetransferfunctionG=qm/q0maybe SimplerepresentationofRCD SimplerepresentationofG(D)=qmq
RCD+ G(s)=qm(s) x1uLetx=q,u= x1u
q0(
RCs+Objective:heatingcold-liquidtothetemperatureqa,Wqcqa,Wqc,environmenttemperatureInput(controlvariable)canW,qc,qcandq,etc..ThemostsuitablevariableisW.Othersareasdisturbvariables.StepStep2:AssumptionandStep3:developmathematics •LetQexpressesquantityofqa,qa,Wqc,environmenttemperatureQQ+Firstly,considersteadystate, =Q +Q =Q +QQQ +Q =QQ +Q =QQ =qcccqc,Q =WH QQ +Q =Qqa,Wqa,Wqc,environmenttemperatureAssumingspecificvolumeofc =c =∵qa=qc+ »qwhereWisvery\\qa=qcWThisThisisasystem’ssteadystatemodel. y=a+bx Qc+Qs=ThermalSystems:DirectsteamheaterSecondly,considersystemdynamicmodel,itismore
+Q
Q
qa, hot- andVisavailable isfluid’sdensity,environmenttemperature
qc,qc
whereCiscalledcapacitycoefficient.Itrepresentsacapabilitytostoringenergyofthetank.\
+q
cqa=
ccqc+\C dqa+q cqa=qcqc+WHt Sc
OtherMathematicModelingDirectsteam R=qa
Rrepresentsaresistancetopreventheatenergydepartfromthetank.Itiscalledheat∵q =qc+ »q q, Cdqa
1qaR
1qc
+
dqa+q
=qc+ dqa+qa=qc+qc,qcenvironmenttemperatureThermalSystems:Directsteam
+qa=qc+qa,Wqa,Wqc,environmenttemperature (s)=qa(s)= W(s Ts+qa(s qGd(s)qcIfthereis
(s Ts+IncrementformdifferentialInprocesscontrol,weusuallyconsiderincrementequationofvariables,ForEx.Systemdynamicequation dqa+qa
=qc+ ** \qa =qc0+qa
W dqa+qa
qa
=qc+
KWWeobtainincrementFirst-orderConsideringEqs.labeled**,whichisfirst-orderdifferentialequation,thoughthemodelandRCcircuitmodelrepresenteddifferentsystems,theirtransferfunctionsbetweentheinputandoutputhavesameform.Tde0+e0=
E0(s)(Ts+1)=Ei dqa+qa=qc+
E0(sTsWKqTsWKqa(s)
Ts+First-orderControlpathFirst-order
TsTs1qa(s)First-ordersystem’sstepG(s)=Y(s)= G(s)=Y(s)= U(sTs+Tdy(t)
y(t)= TtT
y(t)t
OtherMathematicModelingLiquid-LevelSystem(液位系统Two-tankliquid-levelcontrolsystemconsistsoftwofirst-orderdependentplantsthatareconnectedinseries.Noted,heretheheightsh1andh2ofthetanksarecoupling(耦合)(seeP53Fig.2.23).Objective:holdh2unchanged,whichrelatedtoqoutandqinqObjective:holdh2unchanged,whichrelatedtoqoutandqinA=cross-sectionaltankObjective:holdh2unchanged,whichrelatedtoqoutandTankTank
dh=-q 1TankTankd2hdt+(T1+T2+A1R2 2+h2=R2q -R2q Notethisiscoupling1TankTankd2hdt+(T1+T2+A1R2 2+h2=R2q -R2q LiquidlevelSystem-1:transfercontrolGcontrolG(D)u(t= h2(t)-R2-T1R2T1T2D2++A1R2)D+ (D)y(t =h2(t)(tqin(tRT1T2D2+ + +A1R2)D+LiquidlevelSystem-1:stateAssignedstateAssignedstatevariablesx=h1x=h1 h2x-1x21= R +x0-R -1T-1AandinputvariablesLetoutputvariables h2y=hy=1y=1x0x1 2LiquidlevelSystem-Two-tankliquidlevelcontrolsystemasFig.below.Definitions A1TankA1TankTankA=cross-sectionaltankObjective:Objective:holdh2unchanged,whichrelatedtoqoutandqinNotedthattheheightsandh2herearemeans:controlqout( LiquidlevelSystem-2whereTank Disturb
=q1
- Tank h2
eliminateinternaleliminateinternalvariablesq1,h1,etc.thenwegot
Tank
R1RR = (R 1
-h2Tank Controlinput A1TankA1TankTankThisisaninput/outputmodel,expressestherelationshipofoutputh2andd
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年广东江门中医药职业学院马克思主义基本原理概论期末考试模拟题含答案解析(夺冠)
- 2025年常德学院马克思主义基本原理概论期末考试模拟题含答案解析(夺冠)
- 2025年大通回族土族自治县招教考试备考题库附答案解析(夺冠)
- 2025年福建体育职业技术学院马克思主义基本原理概论期末考试模拟题附答案解析
- 旅游管理自考就业前景
- 2025四川内江隆昌市响石镇中心学校招聘1人备考笔试题库及答案解析
- 四川省卫健委所属事业单位西南医科大学附属口腔医院2025年12月公开考核招聘工作人员参考笔试题库附答案解析
- 天水市2026届协议培养师范毕业生 双向选择签约活动(141人)参考考试题库及答案解析
- 2025江西省人力资源有限公司招聘生产服务一线人员2人考试备考题库及答案解析
- 2025年西安雁塔区中医医院招聘备考笔试试题及答案解析
- 陕西单招数学试题及答案
- 应收账款债权转让协议
- 四川省宜宾市长宁县2024-2025学年九年级上学期期末化学试题(含答案)
- CNAS-CC01:2015 管理体系认证机构要求
- 可行性报告商业计划书
- 甲流防控知识培训课件
- DB32 T538-2002 江苏省住宅物业管理服务标准
- 湖南师范大学课程毛概题库
- 借住合同范本(2篇)
- 2025年民航华北空管局招聘笔试参考题库含答案解析
- 公司反腐败反贿赂培训
评论
0/150
提交评论