电力场的输电阻塞管理_第1页
电力场的输电阻塞管理_第2页
电力场的输电阻塞管理_第3页
电力场的输电阻塞管理_第4页
电力场的输电阻塞管理_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

#电力市场的输电阻塞管理摘要:随着电力系统改革的进行和用电紧张的缓解,电力市场化将进入新一轮的发展。本文根据电力市场交易规则和阻塞管理原则,运用统计学、数学规划等工具建立了一个电力市场输电阻塞管理的数学模型,同时对于给定的题设条件,对模型进行了求解和讨论。首先,运用逐步回归的方法拟合了各线路潮流值关于机组出力的实验数据,得出了6个线路潮流值的经验回归公式。其次,主要解决本文的两个核心问题:阻塞费用的计算;阻塞时如何调整出力以满足最大的安全和负荷需求。为了便于数学上处理和计算,我们采用的阻塞费用UiQ计算8公式是最简单的线性形式,然后以-Ui(L)最小为目标函数建立一个规划模型,然后分i4别根据问题3――问题5的条件,分别计算求解。结果发现,在负荷需求为982.4MW时,基本上可以通过阻塞管理可以较安全地满足需求,出力分配为 x^150,X2=79,x3=180,x4=99.5,x5=125,x6=140,x^95,x8=113.9,但是负荷需求为1052.8MW时是无论如何都不可能满足的,所以必须拉闸限电。此时是可以看成一个双目标规划,即要安全性尽量高,出力和又要尽可能大。求解时,采用列举不同安全裕度的形式,得到一个相对较优的解:x1=153, x2 =88, x3 二228, x4 二99.5, x5 =98,x6 =100.1,x7-102.1,冷=117一条经验性的规律是:线路潮流上限是模型的最主要的约束,是电力运营的瓶颈。本文通过一定的合理的简化和假设,建立了一个较为简单的优化(规划)模型,并借助Matlab程序提供了简单的求解方法,最后给出了建议和评价。关键词:线形回归数学规划阻塞费用

一问题重述上图给出了本问题的一个处理流程:电网公司根据各机组当前出力情况以及下一时段的负荷需求预报,发电厂商则根据市场交易原则,得出下一时段的各机组的出力分配预案,网方以此计算出各线路的有功潮流,判断是否会出现输电阻塞的情况。如果不出现,接受各机组的出力分配预案;否则,根据阻塞管理原则进行调整。根据阻塞管理原则,当改变出力方案时,就会出现序内容量不能出力的部分以及报价高于清算价的序外容量的部分,使得发电方产生损失,因此网方应该给予一定的补偿,这部分就是阻塞费用。现在考虑的电网有6条主要线路,厂方有8台发电机组,当前各机组的出力方案,各线路上的有功潮流以及围绕当前方案的一些实验数据给定。要求:设计一种简明、合理的阻塞费用计算规则,可以均衡的考虑序内容量不能出力的部分以及报价高于清算价的部分,并能尽可能的减少阻塞费用。以此为基础,加上有功潮流的近似式,当线路发生阻塞的时候,相应的对出力方案作出一些调整,消除输电阻塞。二基本假设以及相关符号说明1•出力连续性假设各机组的出力是连续的,受到机组爬坡速度的限制,不存在出力的突变。2•户负荷的需求假设对每时段的的负荷预报仅仅是该时段平均负荷的预报, 在每个考察时段内实际负荷会在预报负荷的周围波动,但总体上不影响用户的用电,也不存在安全问题。3•户需求的满足假设满足用户的负荷需求只是在该时段的开始时刻达到预报负荷即可, 而在该时段内出力会不断变化,以达到下一时段的用户负荷预报需求。4•清算价格的假设假设方案改变后,机组的同一时段内的清算价固定,不发生变化5•其他假设为了更好地考虑阻塞费用,考虑发电商(厂方)和电网公司(网方)两个实体,网方从该厂方购买电能,但该发电商可能有多个买家(电网公司)。符号说明:X0i i=1,2,3第i台机组的当前出力值(即方案0)々i-1,2,3第i台机组的下一时段的出力方案_X=为一Xoi >1,2,3第i台机组的出力值差额vi ^1,2,3.第i台机组的爬坡速率yi iM,2,3.第i条线路的有功潮流值Ai i=1,2,3.…第i条线路的限值。Zi=1,2,3第i条线路的限值的裕度p 表示下一阶段的负荷预报三具体建模过程[11由于给定了围绕当前各机组的出力以及各线路上的有功潮流,我们利用这 32组数据,采取线性回归的的方法,对数据进行拟合。以各线路上的有功潮流为被解释变量,用各机组的出力情况作为解释变量,先用SPSS统计软件作多元函数的一次线性拟合,即=」X1:屜才X3,3X4-4X•5X•:6X6「X7;得到各线路上有功潮流关于各发电机组出力的函数关系式, 通过对该拟合作F检验,以及对拟合优度的比较,发现在0.05以及0.01的置信度上,拟合都是高度显著。由于采用的是逐步回归(Stepwise)方法,随着拟合的进行,在每一次取舍之后,拟合优度都是逐步增大的,因此可以认为该结果还是比较准确的反映了对实际数据的拟合情况。从另一方面考虑,由于各机组是独立发电,互不影响,而每条线路的有功潮流均机会均等的与8台机组的出力情况有关,因此,该回归模型中应该不存在交互效应,至于较高次数的回归,我们认为也没有太大的实际意义,因为从上述回归来看拟合已经是高度显著,在将次数提高结果也不会有太大的的改进,况且从数据的变化来看,1—4方案第一机组的出力变化,而其他机组出力不变,对应于1—4方案的各线路的有功潮流第五条线路的负荷几乎不变, 而其他线路均有不同程度的变化,得到的关系式中也是如此,第五线路的潮流值与第一机组的出力无关,其他关系式也满足;而从实际情况来考虑,用一次多元函数来模拟也是比较合理,符合一定的实际情况,因此我们用一次多元函数来解释各线路上的有功潮流与各机组的出力情况的关系,以上拟合得经验回归函数如下:%二舌(各公2,禺*,%公6公7公8),即:y1=110.01640.0831为0.0488x20.0532x30.1200&-0.0251x50.1224/0.1211x7y2=131.2189-0.0546x「0.1279x20.0333x40.0869x5-0.1124x6-0.0189X70.0987X8甘T08.3922-0.0701X10.0604x2-0.1571x^0.0101x40.1238x5-0.2021X8y4=77.4817-0.0345xi-0.1024x20.2052x3-0.0208x^-0.0118x50.0060X30.1449x70.0766x8y5=133.12490.2430X2-0.0647x^0.0412x^-0.0654x50.0701xs-0.0040X7-0.0091x8y6=120.79300.2377^-0.0604x2-0.0780x3-0.0929%-0.0468x0.1662x7由上述函数关系表达式可以看出,各线路上的有功潮流值基本在一个固定值的上下波动,由于各机组出力的权数很小,均小于1,所以该波动值一般不会很大,在考虑每条线路是否会发生阻塞时,可以先用(110,131,108,77,133,120)即函数表达式的常数项,与各线路的潮流限值相比较,便可以对各线路的阻塞情况有个大概的了解,以便以后的方案调整可以简化一点,其中如果潮流值为负值仅仅表示方向的不同而已,不涉及正负的关系。在上述关系式中,我们仅选了围绕0方案的32组数据作回归,把0方案的数据当作当前的运转情况,在以后的计算中会进一步用到该组数据。【2】这里我们给出一种最简单的阻塞费用的计算规则:1Ui仁Xi)蔦|_为|*C 这里C表示清算价格Ui(Lx)表示对第i台机组的补偿。当]x^0时,表示有序外容量,厂方以低于对应报价的清算价出力,厂方损失,故网方应对厂方补偿。当]<0时,表示有序内容量,厂方丧失了向其他网方输出电能赢利的机会(即“机会成本”),因而网方同样要对厂方补偿。由于改变出力方案后,各机组的出力或升高或降低,即「为有正有负,所以这里我们取了绝对值,表明改变预案责任在于网方,所以无论如何都是网方赔偿。这里取Ui^xJr^Uxi|*C,是因为它比较简单直观,易于计算。4这样,我们得到如下的规划模型:【3】根据市场交易原则,这一阶段要得出各机组的预分配方案。由市场交易规则可知市场交易中心根据机组当前报价、当前出力以及出力改变速率,按段价从低到高选取各机组的段容量或其部分,直到其和等于等于预报负荷。我们将各机组的段价由低到高进行排序便可以得到相应的段容量的入选部分,直到段容量之和等于预报负荷具体的算法为:设Sj为第i机组第j段的段容量,rj第i机组第j段的段价i=1,2,3….8,j=1,2,3….8;将rj按照由低到高排序,对应的每个rj有自己的段容量,将段容量累加直到等于负荷需求为止,此时负荷mnP=二二Siji4j4(其中q可能取某容量的一部分,m,n为入选的段个数);nXi八Sjj丄(jJ238)清算价为最后一个入选的q的rij;P=982.4时,由以上的排序可以得到各机组各阶段的容量值,所以对各机组第一到第六段容量入选部分累加就可以得到各机组的出力分配预案,结果如下:表(一)机组/段1234567Xi1700500030015023002081560793110040030001804555 :10101010\0:10057551501515012569501020015014075015—515100\09587002002003.4113.4此时的段价为g=302元/MWh由于有机组爬坡速度的限制,在一个交易时段内要考虑在当前的出力情况下机组能否攀升到预案所分配给各机组的出力,因此我们要作以下的判断:x0^15v^刍岂x0i15vi (*)

将各机组当前的出力及各机组的爬坡速率代入上述判断式中可以得到:8::%::88132:X3::2880.5&:: 99.598:x5::15295::X5::15569::X7::102.163::疋::117可以看出第四机组的出力超出了其所能承受的最大值, 因此还要对方案进行改进。我们将第四机组中超出的部分去掉,差额再按照市场交易规则,对剩下的段容量再重复以上的过程,因此可以得到重新分配后的出力情况,如下:表(二)机组/段1234567X1700500030015023002081560793 :1100400:3000109.5099.55755150151501256:9501020\015014075015515:103.409587002002003.9113.9以上结果即是分配预案。此时的清算价为303元/MWh【4】根据第一部分中得到的线路潮流值关于各机组出力的关系式以及第三部分中的预分配方案,可以得到各线路的潮流值,具体如下:表(三)y1y2yay4ys173.35141.01-150.96120.912136.82168.51由以上数值与线路潮流限值以及起安全裕度相比较可以看出, 虽然6条线路都在安全裕度以内,但第1、5、6条线路已经超过限值,已经产生了线路阻塞,所以要对原方案进行调整,调整的目标是对原预案作出适当的调整使各线路的潮流值尽量不要超过限值,即不产生阻塞,并使网方赔偿的阻塞费用最小,还应满足原负荷需求。我们只需以阻塞费用为目标函数作最优化的规划,由第二

部分的的阻塞函数可以得到以下规划:Mins.t.Mins.t.、、5(Lx)i-48X=982.4i4i=1,2,...,8Ix-Xoi|—Vi=1,2,...,88由于》UiL8由于》UiLxi)i占-Xi1含又绝对值难以分析处理,我们将目标函8数替换成8数替换成c、Lxi2i4,这里我们认为C*7IxJ2的最优解同时也是i48c*aLxI的最优解i4利用Matlab程序fn1.m(见附录),求解得:表(四)X1X2X3X4XXX7X1535822878.948124.915569.567114.99这就是调整后的各机组出力。此时,各机组的出力满足条件限制,虽然第一条线路的潮流值超出了限值,但还在安全裕度的范围内,所以应该可以看作是可行解,其阻塞费用为1-4065510163.754【5】 当P=1052.8时,由表(一)可以得到,各机组各容量段的入选部分,具体结果如下:表(五)机组/段12345678Xi170050003000150230020815600793;1100400[300120020014:5551010:101000100575515015150101356:950102015 :100150 [7:5015515:10103.80108.818700200200200130现在我们来看各机组能否达到该预案所规定的各机组的出力。由(*)中的出力范围可以看出第4、8机组的出力值超过了其最大值,因此也要对其作些改进,如同上一部分的方法将4、8取到最大值,不足的部分由剩下的容量段按照相同的方法补足。调整后的出力方案为:表(六)机组/段12345678Xi17005000300015023002081562081311004001300200.3200.34555M010109.50099.5575515015150101356950M02001510015075015\5151010510120870020020070117此时的清算价为第三机组的第八段的段价为 356元/MWh.将以上出力值代入第一部分的方程便可以得出各线路的潮流值结果如下表:表(七)y1y2yay4ysy6178.53140.85-153.41128.68135.91171.43可见第1、5、6线路均超过潮流限值,并且都没有超过限值的安全裕度,我们

仍然要对其进行改进。同样采取第四部分中的改进方法,我们以最小阻塞费用为目标进行规划,但此时我们得到的出力方案超出了各机组的爬坡能力,因此我们又改变了潮流值的限制,即达到安全裕度,很遗憾还是没有可行解。此时我们认为是由于负荷过大致使电网不能承受,无论如何也不能使潮流处于安全裕度以内,因此为保证安全,只能拉闸限电。我们可以考虑将上述规划模型作一下调整,以各机组的出力和最大为优化目标,在线路的裕度范围内可以求出出力最大值,这样就可以得到需要限电的部分,具体如下:8Min'xi1S.t.X-Xoi|X*15 i=1,2,...,8%兰A(1+zJ i=1,2,…,6由Matlab程序fn2.m(见附录),求解得出力最大值为1040.6,各机组的出力情况如下表所示:表(八)X1X2X3X4XXX7X1538822899.598155102.1117此时各线路的潮流都在安全裕度内。由此可见即使达到最大出力也还是不能满足该负荷,只能拉闸限电,二者的差额1052.8-1040.6=12.2MW就是需要限电的最小值。我们现在给出在不同的安全裕度下,分别对阻塞费用做最优化规划时得到的机组的总出力情况,如下表所示:表(九)召0.020.030.040.050.060.070.080.098ZXii二941.61958.32972.071045.71999.191012.671026.151039.632在需要限电的情形下,综合考虑安全与最大出力两个因素,理想的方案是超出安全裕度最小,出力最大,这两方面通常是起相反作用的,所以我们做了几组安全裕度及相应的出力总和的数据,可以看出在安全裕度小于0.05时出力递增,在0.05处突然增加然后减小,可以将裕度0.05作为较好的限制,即各线路潮流以0.05为裕度,进而可以得到安全系数较高,而出力有很大的分配方案(在这两年出现电荒的现实下,这个解具有一定的现实意义)。此时的出力方案为表(十)X1X2X3X4XXX7X1538822899.598100.1102.1117四模型讨论与建议1•本文讨论的阻塞费用函数比较简单,方便处理,因此也难免会出现纰漏,可能与实际吻合的不太好。至于公平性,则取决于观测者的角度和立场。所以该函数的构造是本问题比较关键的一环,而且不同的函数形式会带来不同出方^^02•通过整个建模过程特别是最后一问的解答。我们发现:线路潮流上限是模型的最主要的约束条件,是电力运营的瓶颈;而爬坡速度则是另一个主因素。建议相关部门朝提升电网线路潮流值和机组的爬坡速度的方向努力。参考书目:[1]王沫然,MATLAB6.0与科学计算,北京:电子工业出版社,2001。附件:Matlab脚本程序fn1.mh=eye(8);v=[150;79;180;99.5;125;140;95;113.9];f=-2*v;vlb=[87;58;132;60.5;98;95;69;63];vub=[153;88;228;99.5;152;155;102.1;117];a=ones(1,8);b=[0.08310.048840.053170.12002-0.025150.122410.121120;-0.054550.1278700.033280.08686-0.11243-0.018940.09874;-0.070120.06037-0.15706-0.010110.1238400-0.20211;-0.03446-0.102410.20516-0.02083-0.011830.005950.144920.07655;00.243-0.06465-0.04118-0.065370.07014-0.00403-0.00908;0.23768-0.06044-0.077970.092930.0467600.166150];a=[a;b];b=[982.4185-110.01638150-131.21889-160+108.39221172-77.48168132-133.124851

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论