用列举法求概率树状图_第1页
用列举法求概率树状图_第2页
用列举法求概率树状图_第3页
用列举法求概率树状图_第4页
用列举法求概率树状图_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

25.2用列举法求概率(2)复习

当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表法.一个因素所包含的可能情况

另一个因素所包含的可能情况两个因素所组合的所有可能情况,即n

在所有可能情况n中,再找到满足条件的事件的个数m,最后代入公式计算.列表法中表格构造特点:

当一次试验中涉及3个因素或更多的因素时,怎么办?

当一次试验中涉及3个因素或更多的因素时,用列表法就不方便了.为了不重不漏地列出所有可能的结果,通常采用“树形图”.树形图树形图的画法:一个试验第一个因数第二个第三个

如一个试验中涉及3个因数,第一个因数中有2种可能情况;第二个因数中有3种可能的情况;第三个因数中有2种可能的情况,AB123123abababababab则其树形图如图.n=2×3×2=12例题例1同时抛掷三枚硬币,求下列事件的概率:(1)三枚硬币全部正面朝上;(2)两枚硬币正面朝上而一枚硬币反面朝上;(3)至少有两枚硬币正面朝上.正反正反正反正反正反正反正反抛掷硬币试验解:

由树形图可以看出,抛掷3枚硬币的结果有8种,它们出现的可能性相等.∴P(A)(1)满足三枚硬币全部正面朝上(记为事件A)的结果只有1种18=∴P(B)38=(2)满足两枚硬币正面朝上而一枚硬币反面朝上(记为事件B)的结果有3种(3)满足至少有两枚硬币正面朝上(记为事件C)的结果有4种∴P(C)48=12=第①枚②③例题例2.甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C.D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I,从3个口袋中各随机地取出1个小球.(2)取出的3个小球上全是辅音字母的概率是多少?(1)取出的3个小球上,恰好有1个,2个和3个元音字母的概率分别是多少?取球试验甲乙丙ABCDECDEHIHIHIHIHIHI解:

由树形图可以看出,所有可能的结果有12种,它们出现的可能性相等.∴P(一个元音)=(1)只有1个元音字母结果有5个512∴P(两个元音)=有2个元音字母的结果有4个41213=∴P(三个元音)=全部为元音字母的结果有1个112∴P(三个辅音)=(2)全是辅音字母的结果有2个16=212AEEIIIIII例题

例3.甲、乙、丙三人打乒乓球.由哪两人先打呢?他们决定用“石头、剪刀、布”的游戏来决定,游戏时三人每次做“石头”

“剪刀”“布”三种手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”.问一次比赛能淘汰一人的概率是多少?石剪布石游戏开始甲乙丙石石剪布石剪布石剪布石剪布石剪布石剪布石剪布石剪布剪布石剪布石剪布剪布解:

由树形图可以看出,游戏的结果有27种,它们出现的可能性相等.

由规则可知,一次能淘汰一人的结果应是:“石石剪”

“剪剪布”

“布布石”三类.

(记为事件A)的结果有9种∴P(A)=13=927分别表示小明和小强摸球的所有可能出现的结果

(2014.滨州中考)在一个口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4。小明和小强采取了不同的摸取方法如下。小明:随机摸取一个小球记下标号,然后放回,再随机地摸取一个小球,记下标号;小强:随机摸取一个小球记下标号,不放回,再随机地摸取一个小球,记下标号;

思考:(典型二元事件)问:你能求出小明和小强两次摸球的标号之和等于5的概率吗?P(小强)=4/12=1/3P(小明)=4/16=1/4练习

一签筒内有四支签,分别标记号码1,2,3,4。已知小武以每次取后不放回的方式,取两支签,若每一种结果发生的机会相同,则这两支签的号码数总和是奇数的概率为()A3/4B2/3C1/2D1/3B练习

将背面相同,正面分别标有数字1,2,3,4的四张卡片搅匀后,背面朝上放在桌面上,(1)从中随机抽取一张纸片,求该纸片正面上的数字是偶数的概率。(2)先从中随机抽取一张纸片(不放回),将该纸片正面上的数字做为十位上的数字,再随机抽取一张,将该纸片正面上数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明1/23/12数学病院用下图所示的转盘进行“配紫色”游戏,游戏者获胜的概率是多少?刘华的思考过程如下:随机转动两个转盘,所有可能出现的结果如下:

开始灰蓝(灰,蓝)绿(灰,绿)黄(灰,黄)白蓝(白,蓝)绿(白,绿)黄(白,黄)

红蓝(红,蓝)绿(红,绿)黄(红,黄)你认为她的想法对吗,为什么?总共有9种结果,每种结果出现的可能性相同,而能够配成紫色的结果只有一种:(红,蓝),故游戏者获胜的概率为1∕9。用树状图或列表法求概率时,各种结果出现的可能性务必相同。用树状图和列表的方法求概率的前提:各种结果出现的可能性务必相同.例如注意:想一想(1)列表法和树形图法的优点是什么?(2)什么时候使用“列表法”方便?什么时候使用“树形图法”方便?

利用树形图或表格可以清晰地表示出某个事件发生的所有可能出现的结果;从而较方便地求出某些事件发生的概率.

当试验包含两步时,列表法比较方便,当然,此时也可以用树形图法;

当试验在三步或三步以上时,用树形图法方便.练习1.在6张卡片上分别写有1~6的整数,随机的抽取一张后放回,再随机的抽取一张,那么,第一次取出的数字能够整除第2次取出的数字的概率是多少?(课本P154/练习)2.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,当有三辆汽车经过这个十字路口时,求下列事件的概率:(1)三辆车全部继续直行;(2)两辆车向右转,一辆车向左转;(3)至少有两辆车向左转.答案:197181.2.(1)(2)(3)127727第一辆左右左右左直右第二辆第三辆直直左右直左右直左直右左直右左直右左直右左直右左直右左直右左直右共有27种行驶方向解:画树形图如下:练习3.用数字1、2、3,组成三位数,求其中恰有2个相同的数字的概率.1231组数开始百位个位十位12312312323123123123123123123123123解:

由树形图可以看出,所有可能的结果有27种,它们出现的可能性相等.其中恰有2个数字相同的结果有18个.∴P(恰有两个数字相同)=182723=4.把3个不同的球任意投入3个不同的盒子内(每盒装球不限),计算:(1)无空盒的概率;(2)恰有一个空盒的概率.练习123盒1投球开始球①球③球②123123123盒2盒3123123123123123123123123解:

由树形图可以看出,所有可能的结果有27种,它们出现的可能性相等.∴P(无空盒)=(1)无空盒的结果有6个62729=(2)恰有一个空盒的结果有18个∴P(恰有一个空盒)=182723=试一试:一个家庭有三个孩子,若一个孩子是男孩还是女孩的可能性相同.(1)求这个家庭的3个孩子都是男孩的概率;(2)求这个家庭有2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论